


### UNIT 2 BIOCHEMICAL MOLECULES

- 2.1 INORGANIC MOLECULES
  - WATER
- 2.2 ORGANIC MOLECULES
  - I. CARBOHYDRATES
  - II. LIPIDS
  - III. PROTEINS
  - IV.NUCLEIC ACIDS

#### Unit 2

#### **Biochemical molecules**

### Biological molecules can be classified into two main types: Inorganic molecule; ;

- ✓ Contain either carbon or hydrogen or neither of them
- Relatively small and simple compound
- ✓ E.g. minerals and water

#### ➤ Organic molecules.

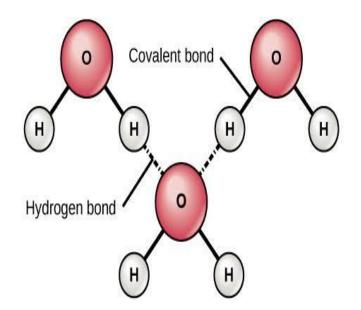
- Always contain both carbon and hydrogen
- ✓ The main structural component of living cell
- Regulate metabolic reaction and provide energy for life process
- Includes lipids carbohydrates, proteins and nucleic acids

## Activity 2.1: Grouping Molecules into organic and inorganic and make a table.

- 1. C12H22O11 (sucrose)
- 2. CO (carbon monoxide)
- 3. C5H10O4 (deoxyribose)
- 4. C18H36O2 (stearic acid – a fatty acid)
- 5. NO2 (nitrogen dioxide)

- 6. H2SO4 (sulphuric acid)
- 7. C3H6O3 (lactic acid)
- 8. C6H14N2O2 (lysine an amino acid)
- 9. C10H16N5O13P3 (ATP)
- 10. NaCl (sodium chloride

#### **2.1 INORGANIC MOLECULES**

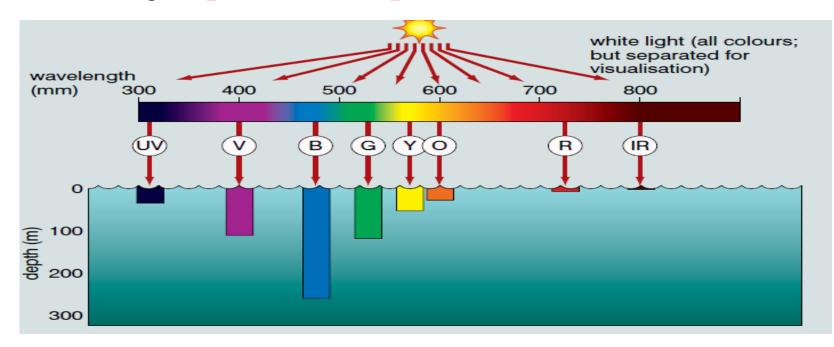

- Inorganic molecules are molecules that contain either carbon or hydrogen or neither of them. E.g. water H<sub>2</sub>O, Carbon dioxide CO<sub>2</sub>, Calcium carbonate CaCo<sub>3</sub>
- The most common elements in many cells are that make up 95% of the body weight of organisms
  - > Hydrogen 59%
  - ≻ Oxygen 24%
  - **Carbon 11%**
  - ≻ Nitrogen 4%
  - ➤ phosphorus and Sulphur 2%

#### Other that are important for humans are

- > Calcium (Ca) for bones, teeth and muscles,
- Chlorine (Cl) for digesting food
- Fluorine (F) for tooth enamel

### WATER

- The most abundant component of the living cell.
- Chemical formula for water  $-H_2O$ .
- Have bent into a 'v' shape.
- It is formed by hydrogen bond
- Hydrogen bonds are an electrostatic interaction between molecules of compound in which hydrogen atoms bounded to electronegative atoms such as oxygen.




### **Importance of water**

- Water has many important to living things in a number of ways, such as:
  - ≻ a place to live for the varieties of organisms
  - ≻a transport medium
  - ➤ a reactant in many chemical reaction
  - ≻ a place for other reactions to take place
  - > Water is a vital chemical constituent of living cells

#### Water exhibit the following properties

- **1. Transparent;** allow light to pass, which is important for photosynthetic activities of plants and algae found in aquatic habitats
- Different wavelengths of light penetrate to different depths. Red and indigo wavelengths are soon lost. Blue and green wavelengths penetrate deeper than others.



# 2. Water has a high specific heat capacity.

- Specific heat capacity; the amount of heat required to rise the temperature of one gram of substance by one degree celsius.
- Water has a specific heat capacity 4.2 J of energy to heat one gram of water by one degree celsius
- Because of its high specific heat capacity, organisms resist changing its temperature when it absorbs or loss heat.
- Water high specific heat capacity help the organism
  To maintain a constant internal temperature
  Minimize fluctuations in temperature inside cells.

# **3. Water has a high latent heat of vaporization**.

- Latent heat of vaporization the amount of energy needed to converting one gram a liquid to a gas at constant temperature
- Water requires a lot of energy to change liquid water into vapor (or steam).
- High heat of vaporization use as a cooling mechanism in animals as water evaporates from the surface of animals

### 4. High heat of fusion

- Latent heat of fusion the measure of heat energy to melt the solid (ice).
- Ice water requires relatively large amount of energy to melt it
- Melting of 1 mole of ice water requires 5.9KJ of energy
- Similarly liquid water loss large amount of energy to freeze
- Therefor the contents of cells and their environment less likely to freeze

# 5. Solid water (ice) is less dense than liquid water.

## The density of water decrease below 4<sup>0</sup> C and ice tend to floats

- This is because water expands when it freezes. in cold weather, water freezes from the top down.
- So water insulated under the ice enables life to persist under the frozen water.

### **6.Water has a high surface tension.**

- Surface tension is the tension at the surface of a liquid resulting from unbalanced forces acting on the molecules at the surface
- High surface tension of water is due to strong attraction force of water molecule called cohesion.
- High surface tension allows organisms to live on and just below the surface

## 6. Water is a good solvent for many substances

- Many organic and inorganic substances dissolve in water.
- Solvent property of water use
  - ➤To transport dissolved substance through osmosis, diffusion and active transport
  - ➤To transport dissolved minerals upwards from the roots through xylem vessels.
  - ➤To transport dissolved organic substances through phloem tubes all over the plant.

# 8.Water has the ideal viscosity for a transport medium.

- Viscosity is a measure of how a fluid flows easily or the measure of resistance to flow
- It helps for effective transportation of substance in the body and cells
- If water were more viscous (less fluid) than it is;
  - $\succ$  Blood cells do not move through the blood vessels.
  - > delicate organelles in the cells would be damage
- If water were less viscous (more fluid) than it is,
  - It would flow too easily and, inside cells, the organelles would not be supported.
  - A less viscous liquid would not move the blood cells around the system as efficiently

#### 9. Water as a reactant.

- Many reactions in living things need water as a raw material.
  - ✓ **Photosynthesis**: water is the source of hydrogen ion to reduce  $CO_2$  to sugar
  - ✓ Hydrolysis : water molecules are used to split large food molecules into smaller ones that can be absorbed into the bloodstream
  - ✓ Important in the transport of carbon dioxide around the body as hydrogen carbonate ions.

## 10. Water as a medium for chemical reactions.

- Many chemical reactions are taking place inside cells.
- Many of these take place on the membrane systems of the cell, but others take place in the liquid 'cytosol' of the cytoplasm.
- Many of the reactions of photosynthesis and respiration take place in the liquid inner regions of chloroplasts and mitochondria.
- Water is an ideal medium for these reactions, some of the reasons are;
  - ✓ It can dissolve many substances; the reactions will only take place effectively in solution.
  - ✓ It has a low viscosity; the particles can move around and come easily into contact with each other.

### **Summery of water biology**

| Water property                                | Significance for life                                                             |
|-----------------------------------------------|-----------------------------------------------------------------------------------|
| High transmission                             | <ul> <li>Light can pass through the cell for<br/>photosynthesis</li> </ul>        |
| high latent heat of vaporization.             | <ul> <li>Use as a cooling mechanism in animals by evaporation</li> </ul>          |
| <ul> <li>Ice less dense than water</li> </ul> | ✤ Ice form an insulating layer under water                                        |
| high surface tension                          | <ul> <li>allows organisms to live on and just below the surface</li> </ul>        |
| Solvent property                              | <ul> <li>Used for transport dissolved substance and medium of reaction</li> </ul> |
| ✤ Ideal viscosity                             | Effective transportation of substance in the body and cells                       |

### **2.2 ORGANIC MOLECULES**

- Organic molecules are molecules that contain carbon and hydrogen
- There are four classes of organic compound in any living things
  - I. Carbohydrates
  - **II.** Proteins
  - **III. Lipids**
  - **IV. Nucleic acid**

### I. CARBOHYDRATES

- All carbohydrates biological molecule that contain the elements carbon, hydrogen and oxygen atoms in the proportion of 1:2:1 respectively. (E.g. glucose, C6H12O6, and maltose, C12H22O11).
- The ratio hydrogen and oxygen atoms always 2:1

#### **General property of carbohydrates**

- 1) Carbon chain contains **carbonyl functional** group either aldehyde **(aldose)** or ketone groups **(ketoses).** 
  - Aldehyde are easily oxidized because they have a hydrogen atom attached to the carbonyl group.
  - Ketones do not have hydrogen bond attached to the carbonyl group and hence resist oxidation.
- 2) Contain several hydroxyl group on the carbon chain
  - The hydroxyl group determines the property of water

## Carbohydrates have a range of functions:

- 1. They are used as the main source of energy for the body
- 2. Serves as storage form of energy in plants and animals.
  - Starch: storage form of carbohydrates plants
  - Glycogen: storage form of carbohydrates animals
- 3. They are used as structural components include:
  - Cellulose; the main constituent of cell wall of plants
  - Chitin; the components of cell walls of fungi and the exoskeletons of insects
  - Peptidoglycan; the components bacterial cell walls
- 4. Use as a cell surface marker for cell to cell identification

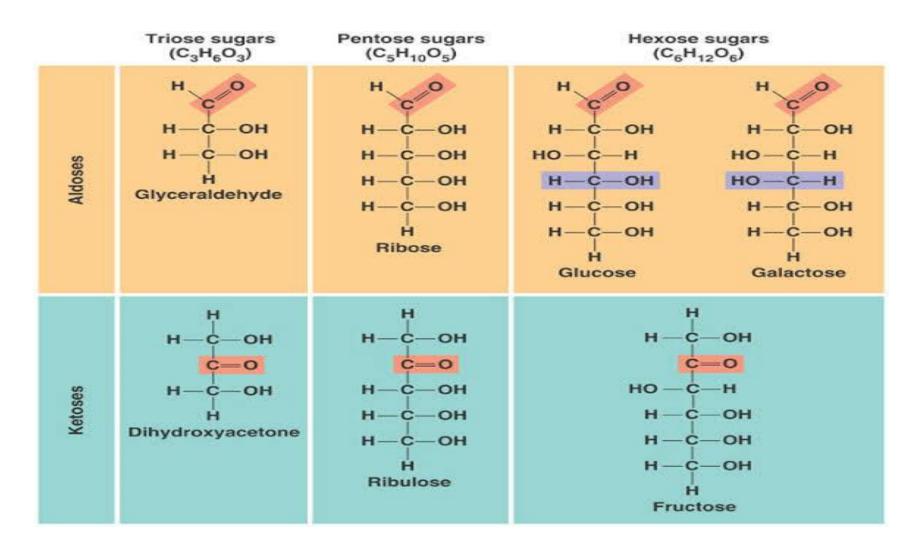
#### **Classification of carbohydrates**

- Carbohydrates categories into three major groups depending on the complexity of the molecules:
  - 1) Monosaccharaides/ simple sugars/
  - 2) Disaccharides /double sugars /
  - 3) Polysaccharides/ complex sugars/

### 1) Monosaccharaides

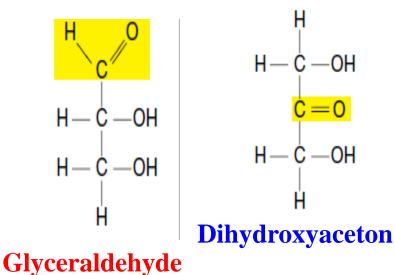
- Monosaccharaides comes from Greek:
  MONOS, single /one/
  SACCHAR, sugar
- They are made up of a one sugar unit.
- They are the simplest form carbohydrates.
- Cannot broken down to simpler sugar by hydrolysis
- They are soluble in water, sweet and crystalline
- All have the formula Cn (H<sub>2</sub>O)n, where the number of carbon atom in the chain can be 3-7

## There are two functional groups in monosaccharaides:


1. Aldehyde (CHO); monosaccharaides with this group are aldoses

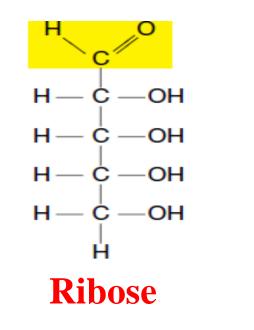
**\*E.g.** Glyceraldehyde, Ribose, Glucose, Galactose

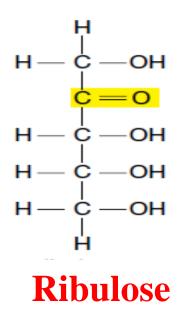
2. Ketone group (C=O): monosaccharaides with this group are ketoses.


**\*E.g.** dihydroxyaceton, Ribulose, Fructose

#### **Aldose and ketoses sugar**




## Monosaccharaides can be classified according the carbon atoms present in the molecule.

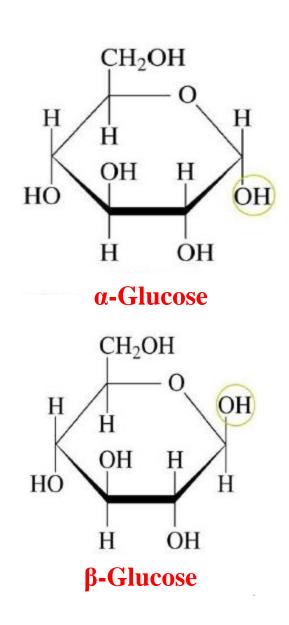

- Triose (C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>) contains three carbon atoms.
  - Glyceraldehyde and dihydroxyaceton are intermediate molecule in photosynthesis and respiration.
  - Glyceraldehyde and dihydroxyaceton are isomers
  - Isomers are molecule with the same chemical composition, but a different arrangements of atoms



#### Pentose

★ A pentose (C<sub>5</sub>H<sub>10</sub>O<sub>5</sub>) monosaccharide has five carbon atoms.
➤ Ribose and deoxyribose are found in nucleic acid.
➤ Ribulose is intermediate molecule in photosynthesis






### Hexose

**Hexose** ( $C_6H_{12}O_6$ ) monosaccharide has six carbon atoms. Glucose, Galactose, Fructose are the most commonly known hexose. Glucose "blood sugar" н immediate source of energy H — Ċ —OH for cellular respiration  $\dot{C} = 0$ H — Ċ — OH H – Ċ – OH HO-C-HHO - C - HHO - C - H**Fructose**; a sugar found in H - C - OH $H - \dot{C} - OH$ HO - C - Hhoney, fruit and nectar H — Ċ —OH H - C - OHH — Ć — OH H - C - OHH - C - OHH - C - OHGlucose is the hexose Ĥ Ĥ produced in photosynthesis Glucose **Fructose** Galactose and used in respiration.

### Contd.

- The significant difference of aldose and ketose sugar are lies on their ability to form polymers.
- Nearly all the polysaccharides found in living things are polymers of aldose monosaccharaides.
- Monosaccharaides can form either straight chain or ring structure.
- When glucose molecule in are in aqueous solution, they forms α-glucose and β-glucose ringed structure
- \* The difference between  $\alpha$  glucose and  $\beta$ -glucose is the position of –OH on the first carbon



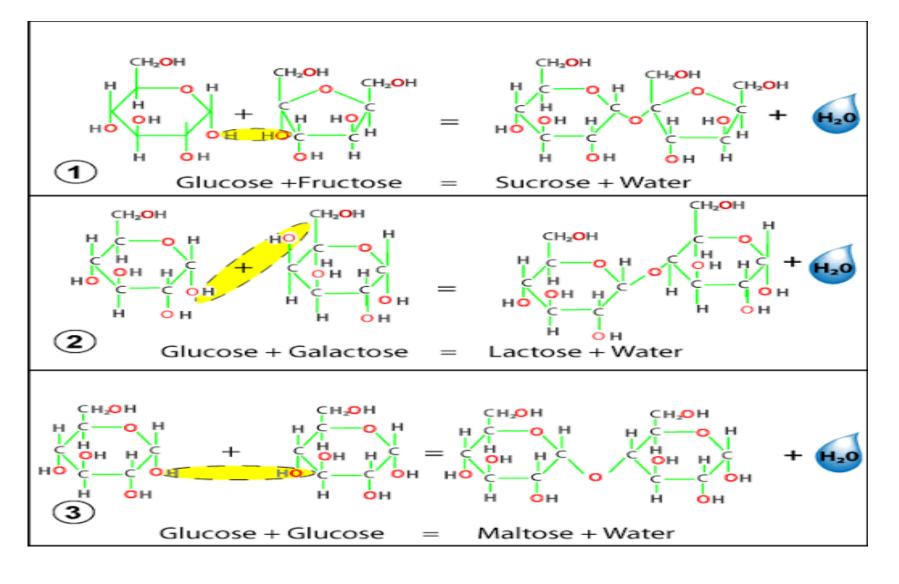
#### 2) Disaccharide;

- Disaccharides are made up of two simple sugars joined together by condensation reaction.
- \* Condensation reaction joins two simple sugars to form a double sugar, and a molecule of water ( $H_2O$ ) is removed.
- The bond formed between two simple sugar are glycosidic bond
- \* The formula of disaccharide is  $C_{12}H_{22}O_{11}$

#### Some of the common double sugars are :

#### ♦ Maltose (malt sugar); C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>

\* is derived from two α-glucose molecules
\* two α-glucose molecules is linked by α 1,4 glycosidic bond
\* it is a reducing sugar (reduce Benedict's reagent)


#### **\*** Sucrose (table sugar) C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>

- **\diamond** is derived from an **\alpha-glucose** and a **\beta** fructose molecule
- \*it is a non-reducing sugar ( do not reduce Benedict's reagent)
- \*α-glucose and a β fructose molecule is linked by α 1,2 glycosidic bond

#### **♦ Lactose (milk sugar)** C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>

- \*Is derived from a β-glucose and α-galactose molecule.
- \*it is a reducing sugar ( reduce Benedict's reagent)

#### **Disaccharide formation**



#### 3) Polysaccharides;

- Polysaccharides are long chain of many monosaccharaides joined by glycosidic bonds
- They are polymers that are formed by condensation reaction
- Thy have two functions:
  - >Energy storage (starch and glycogen)
  - Structural material (cellulose and chitin)
- Complex and stable forms of carbohydrates
- It is insoluble so it does not change the water potential of the cell

#### Condensation (dehydration)

formation of
 macromolecule by
 removing water

#### Hydrolysis

break a
 macromolecule into
 its unit of molecules
 by adding water

#### Some biological important polysaccharides

#### I. Starch

Starch is a major energy storage in plants,

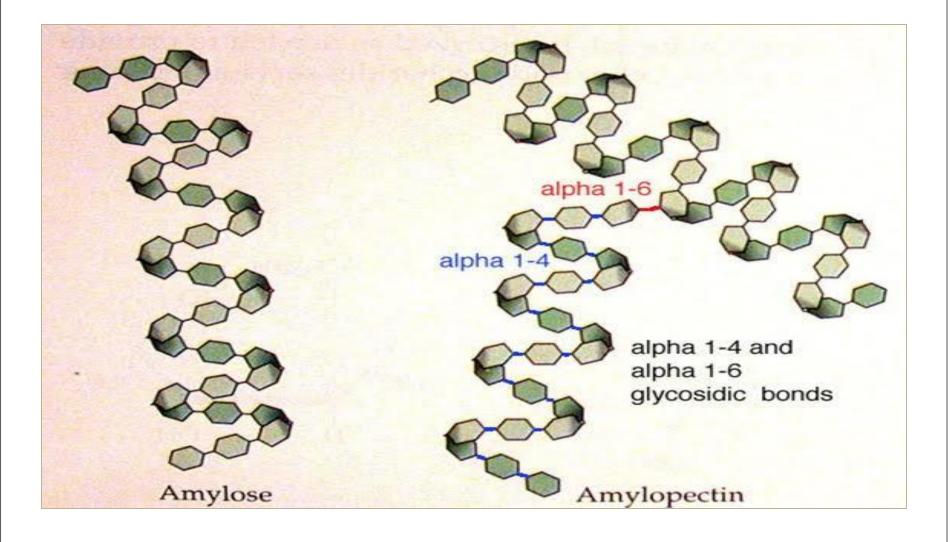
- Starch is a mixture of amylose and amylopectin.
- Soth are polymers of α-glucose, but the arrangement is different.

#### Amylose

- Amylose is liner; a straight chain polymer of α-glucose units
- **\*** The bonding involved is  $\alpha$ -1, 4-glycosidic bonds.
- \* The long chain  $\alpha$ -glucose winds itself into a helix.

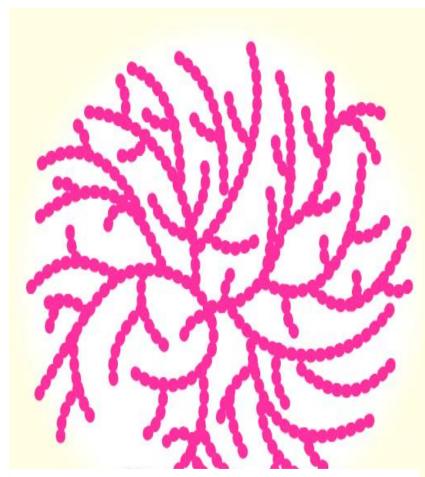
#### Amylopectin

 Amylopectin is a branched chain polymer of α-glucose units


The bonding involved is;

α-1, 4-glycosidic linkage for straight chain

α-1, 6-glycosidic linkage for branched chain


- Amylopectin having a branching chain, this gives many 'ends' to the molecule.
- Stranching chain allows amylopectin to be hydrolysed quickly by amylase enzymes and release glucose for respiration.

#### **Amylose and Amylopectin**

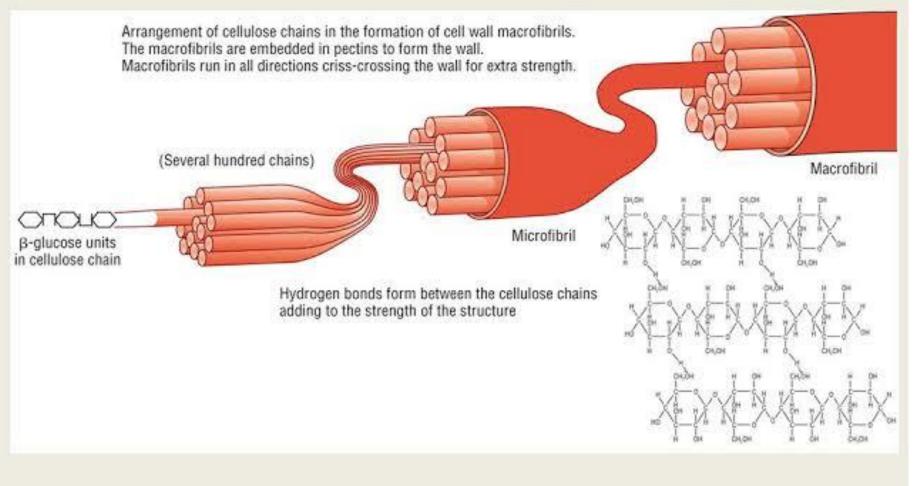


### II. Glycogen

- ♦ Glycogen is a storage carbohydrate in animal cells.
- **\*** Short and highly branched chain of α-glucose
- The bond involved are α-1,4 glycosidic bond and α-1,6 side branches,
- & Glycogen has similar structure with amylopectin but it have more  $\alpha$ -1,6 side branches
- Because of this, it can be hydrolysed more easily during respiration to release more glucose than starch.
- This is important because animals to supply high amount energy more quickly.



A short highly branched chain α-glucose


#### Glycogen

A less branched chain α-glucose compare to glycogen Amylopectin

#### **III. Cellulose**

- The main component of cell walls.
- The most abundant organic molecule on the earth
- Cellulose is a polymer of β-glucose molecules joined by β-1,4 glycosidic bonds,
- Has straight, unbranched chains that run parallel to one another
- Allowing H-bonds to form cross-links between adjacent chains
- So many hydrogen bonds help to strengthen to cellulose
- ♦ Cellulose does this by grouping together to form microfibrils → fibres
- Human cannot hydrolysis cellulose because they do not possess enzyme necessary to break down β-glucose glycosidic linkage

## Cellulose chain, microfibrils and macrofibril (fibre)



## **II. LIPIDS**

- Lipids are made of carbon, hydrogen and oxygen, but they contain much less oxygen than carbohydrates.
- Some of the lipids found in the myelin sheath that surrounds nerve cells are sphingolipids. These are unusual lipids as they contain nitrogen as well as carbon, hydrogen and oxygen.
- Lipids contain much energy per gram than carbohydrates and proteins
- A lipid molecule is hydrolyzed into three fatty acid molecules and glycerol
- They are insoluble in water and soluble in organic solvent like aceton, ether, alcohol etc.

#### Contd.

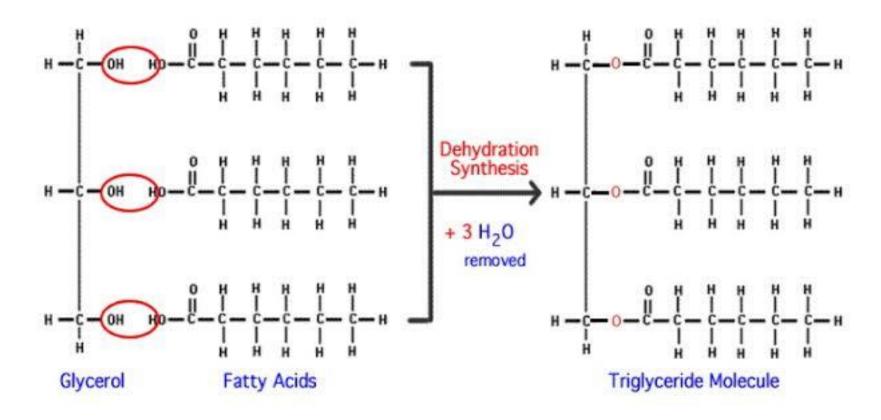
#### Lipids includes triglycerides, oils, fats, waxes, phospholipids, steroids

Three different function of lipids in our bodies

- >Energy storage **E.g. Triglycerides**
- Forming the membrane around the cell E.g.
  Phospholipids
- ≻Hormone and enzymes E.g. Steroids

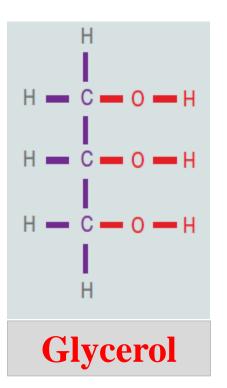
# Lipids are a varied group of compounds that include:

- Triglycerides formed from glycerol and three fatty acids
- Phospholipids formed from glycerol, two fatty acids and a phosphate group
- Waxes formed from fatty acids and long-chain alcohols


# Lipids have several functions including:

- Respiratory substrate –yields many molecules of ATP (twice as much energy) per gram than a molecule of glucose.
- Thermal insulation the cells of adipose tissue found under the skin used as insulation layer under skin
- Buoyancy lipids are less dense than water (oil floats on water), so the presence of large amounts of lipid reduces the density of an animal, making it more buoyant
- Waterproofing the oils secreted by some animals onto their skin are lipids

## 1. Triglycerides


- The most commonly lipids in nature
- Formed from one glycerol and three fatty acid molecules.
  - Glycerol and fatty acids combines using condensation reaction
  - > In making triglycerides three molecule of water is removed
- The bond that link glycerol and fatty acid are called ester bonds
  - Ester bonds formed between a carboxyl group fatty acid and a hydroxyl group glycerol.

#### **Formation of triglyceride**



#### **Contd.**

- Glycerol is a poly hydroxyl alcohol that contain 3 hydroxyl (–OH) functional group.
- \*Fatty acids consists;
  - ➤Covalently bonded hydrocarbon chain.
    - ≻The carboxyl functional group (-COOH)
- The nature of the hydrocarbon chains in fatty acids can differ in two main ways:
  The length of the carbon chain
  - ≻The degree of saturation.



#### **Saturated fatty acid**

- Carbon atoms are joined by a single covalent bond.
- Carbon chain are fully saturated with hydrogen's (more energetic)
- More common in animals lipids
- Solid at room temperature
- Saturated fat, in diet are not good for our long- term health
- ✤ E.g. butter, animal fat

#### **Unsaturated fatty acid**

- The carbon chains have one or more double bonds in them.
- Carbon chain are not fully saturated with hydrogen's (less energetic)
- more common in plant lipids
- Iiquid at room temperature
- ✤ E.g. vegetable oils
- Monounsaturated fatty acid one carbon–carbon double bond
- Polyunsaturated fatty acid more than one carbon-carbon double bonds
  - Polyunsaturated fatty acid generally expected to give better health benefit present in human diet.

## Brainstorming

- 1. Which of the following molecule is **not** a polymer?
  - A. Cell wall B. Enzymes C. Lipid D. Starch

2. A compound with the following formula  $C_5 H_{11}$  COOH Would be

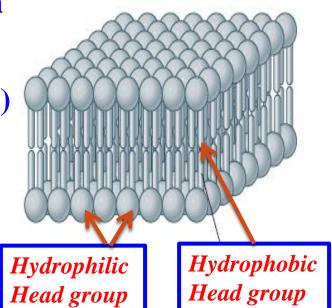
A. Amino acids B. N

**C.** Fatty acids


- B. Nucleic acids D. Carbohydrates
- 3. How many glycerol and fatty acids, respectively, are needed to form 100 molecule of triglycerides
  - A. 100 and 300 C. 50 and 50
  - B. 100 1nd 100 D. 150 and 400
- 4. Some animal like polar beer have a thick layer of fat under the skin, for what purpose does the polar beer mainly use this
  - A. used as body building C. Water proofing layer
- **B. Used as insulation layer D. Make a beer bayonet**
- 5. In equal amount of the following food is hydrolysed which one of the following generate high amount of energy?
  - A. Honey B. Bean C. Olive oil D. Dabo

## **2. Phospholipids**= one glycerol molecule + two fatty acid + a phosphate group.

There are two distinct regions to a phospholipid molecule:
 Hydrophilic (water-loving) polar region, consisting of the


phosphate group

Hydrophobic (water-hating) non polar region, consisting of the fatty acid chain

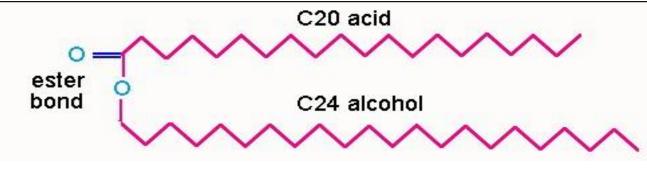


## Phospholipids are called amphipathic lipids due to

- Phosphate hydrophilic tail (soluble in water)
- Hydrocarbon/fatty acid chain/ hydrophobic tail ( insoluble in water)
- Phospholipids are important constituent of plasma membranes.
- In water, phospholipids organized into a bilayer.
  - The hydrophilic heads face outwards into the water
  - The hydrophobic tails face inwards, away from the water.
- Phospholipid bilayer are the base of plasma membrane

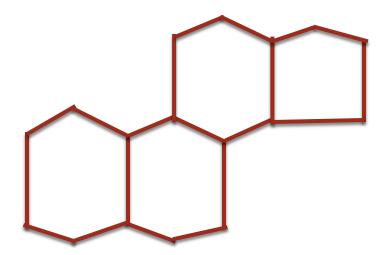


#### A


- 1. Carbon atom are joined by a single bond
- 2. Formed from one glycerol and three fatty acid molecules
- 3. The carbon chains have one or more double bonds
- 4. lipid containing glycerol molecule, two fatty acids and a phosphate group.
- 5. They are called amphipathic lipids
- 6. Used in making plasma membrane
- 7. Reaction convert oil into solid

#### B

- A. Unsaturated fatty acids
- **B. Dehydrogenation**
- C. Triglycerides
- D. Saturated fatty acids
- **E.** Phospholipids
- F. Glycerol
- G. Hydrogenation


#### 3. Waxes

- Formed from fatty acid and a long chain of monohydric alcohol
- Commonly found wherever water proofing is needed such as;
  - Leaf cuticle, Insects exoskeletons
  - ≻Birds feathers"
  - ≻ Mammals fur



## **4** Steroids

- Lipids characterized by 4 bonded carbon ring
- Lipids with no fatty acids chain
- Classified as lipids b/c they are insoluble in water
- Different steroids differ from each other by their side group.
- Examples of steroids.
  - Cholesterol
  - Steroids hormone
    - > Progesterone
    - > Testosterone
    - > Cortisol
  - ≻ Vitamin D
  - > Adrenal hormones
  - Bile salts



#### **Matching**

- 1. Chemical reaction convert lipid into glycerol and fatty acid
- 2. Chemical reaction make lipids from fatty acid and glycerol
- 3. Used as water proofing such as leaf cuticle
- 4. Lipids without fatty acids chains
- 5. Formed from fatty acid and a long chain of monohydric alcohol
- 6. Water molecule is used up
- 7. Its back bone is four bonded carbon ring
- 8. Used in making hormone and vitamins

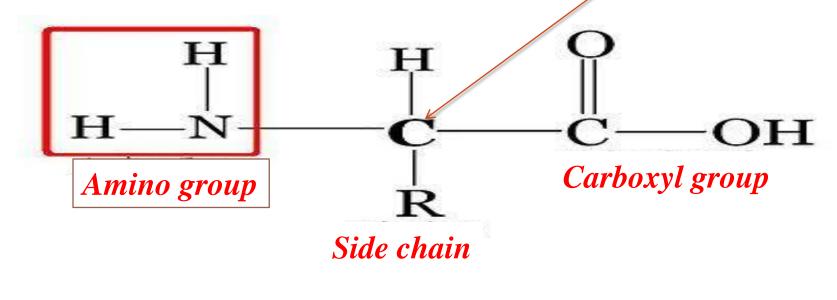
B

A. Waxes B. Hydrolysis C. Dehydration D. Steroids E. Phospholipids F. Neural fat G. Triglycerides

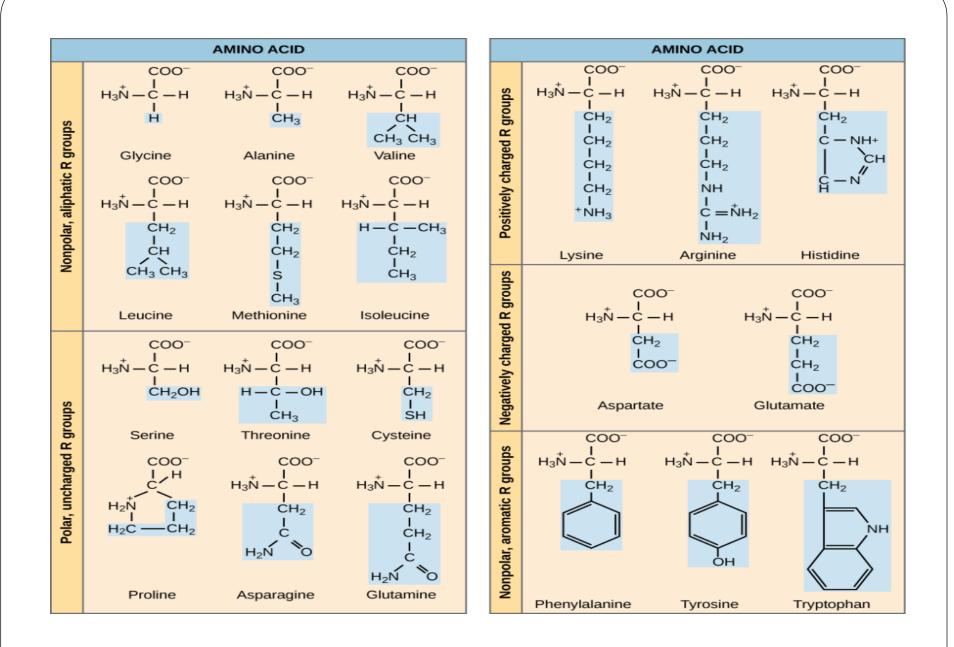
## **Summary questions**

- 1. What makes phospholipids molecules arrange themselves into bilayer in a water molecule?
- 2. What makes phospholipids Amphipathic in nature?
- 3. What determine the fluidity of lipids?
- 4. Why lipids are insoluble in water?
- 5. Why lipids contain much energy per gram than carbohydrates and proteins?

## **III. PROTEINS**

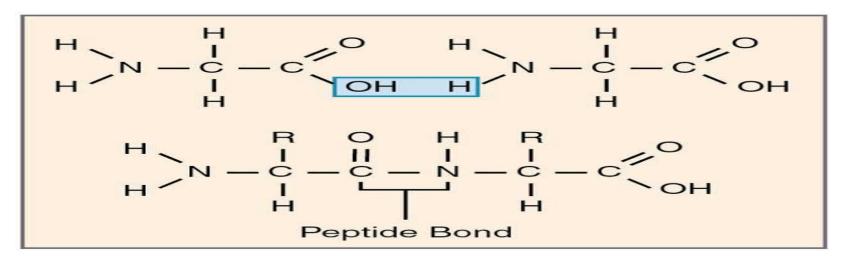

- Proteins are extremely important substances that are needed to form all living cells.
- Contain the elements carbon, hydrogen and oxygen but also contain nitrogen and sulphur.
- Protein requires a templates molecule for its synthesis.
- Protein molecules are polymers of amino acids. However, there are usually twenty different amino acids in any given protein
- Formed by amino acid condensation and a molecule water is released

## **Typical amino acid structure**


 All amino acid have to four chemical groups attached to α-carbon (central carbon)

- 1. A hydrogen atom
- 2. An amino group (–NH2)
- **3. A carboxyl group (–COOH)**
- 4. An 'R' group (side chain)

Different amino acid have different 'R' group




**α-carbon** 



## Contd.

- Amino acids are a building block of protein with two functional groups with opposite charges:
  - 1) the amino group a base
  - 2) the carboxyl group- an acid
- \* **Peptide bond** is the bond that link two amino acids.
- The 'H' from the amino group on one amino acid and 'OH' from the carboxyl group on the other amino acid are lost as water during peptide bond formation.



## Proteins have a range of functions; they are important in:

- a) **Protein provide structure:** they are structure of:
  - Plasma membrane (such as channel, carrier and receptor protein)
  - Connective tissue (collagen)
  - ➢ Hair and nail (keratin)
  - Chromosome (histone)

#### **b)** Regulate body metabolism ;

Enzymes are protein that speed up the rate of chemical reaction in cell.

#### c) Transport and store molecule.

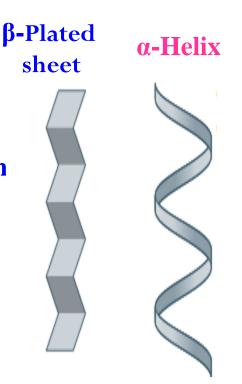
- Hemoglobin is a complex protein transport oxygen throughout the body.
- d) The immune system ;
  - Antibodies are proteins that defend the body against foreign antigen.

#### Level of organization in protein structure

#### **Primary structure**

The sequence of amino acids in a polypeptide chain. E.g. Insulin

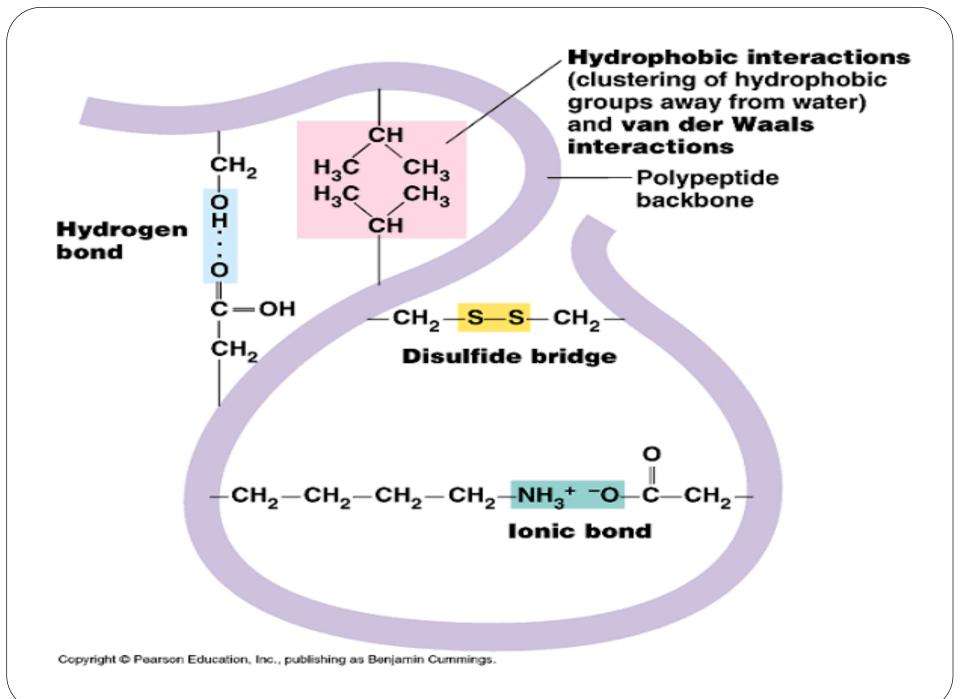
#### **Secondary structure**


- The secondary structure is formed by folding of the primary structure into either an α-helix or a β-pleated sheet
- \* α-helix or a β-pleated sheet are held in shape by hydrogen bonds
- The two most common secondary structure are an α-helix or a β-pleated sheet

**1**) $\alpha$ -helix a coiled secondary structure of a polypeptide

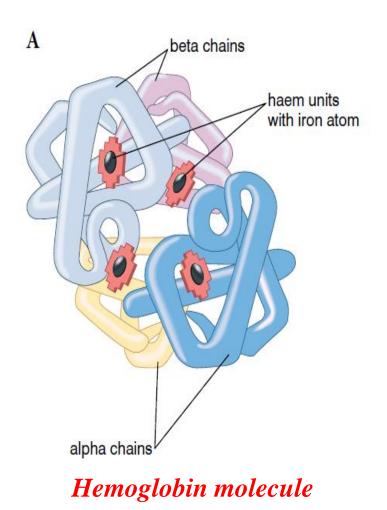
H-bond occur between atoms with in the same poly peptide chain

2) $\beta$ -pleated sheet a folded secondary structure of a polypeptide


H-bond takes place between poly peptide chain



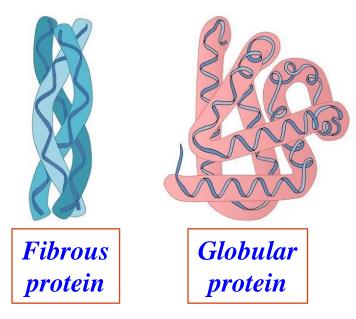
### **Tertiary structure**


Involves three dimensional folding of the secondary structure

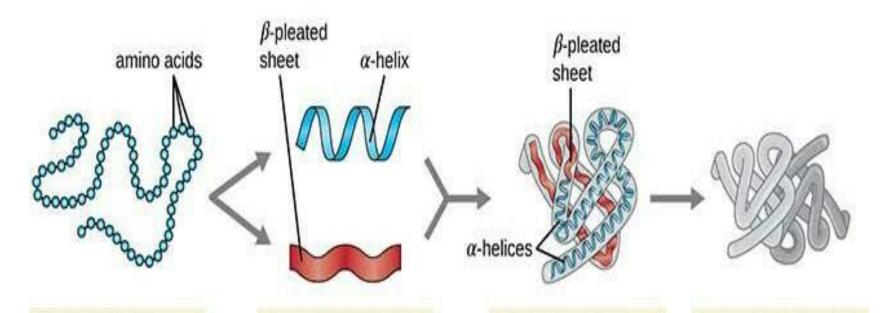
- The new bonds to hold the tertiary structure in place includes;
  - Hydrogen bonds between the R-groups of some amino acids
  - Disulphide bridges (S-S)— between amino acids that contain sulphur
  - Ionic bonds between amino acids with positively & negatively charged R-groups
  - >Hydrophobic interaction
- The tertiary structure of a protein gives each protein a specific function. For example:
  - ≻ the shape of the active site of an enzyme
  - > the shape of a hormone receptor in the plasma membrane
  - ≻ the shape of an antibody to destroy just one antigen



#### Quaternary structure.


- Quaternary structure structures is formed when two or more polypeptide chains folded into a tertiary structure become associated in the final structure of the protein
- Different polypeptide chain are arranged together by ionic and Hbond between polypeptide chain
- Two important examples are;
  - ≻ Hemoglobin
  - Collagen (the fibrous protein found in many tissues in mammals).




#### Proteins are classified into two main groups, according to their molecular shapes:

**Proteins are classified into two main groups**, according to their molecular shapes:

- **1.Fibrous proteins;** a long thread like structure, have structural role that have a tertiary structure that resembles a long string or fiber
  - (e.g. collagen-bone, keratin-hair and nail, tubulin-cytoskeleton and actinmuscle)
- 2.Globular proteins; resembles a glob or ball shaped
  - E.g. Enzymes, insulin, hemoglobin, immunoglobulin and receptor proteins.

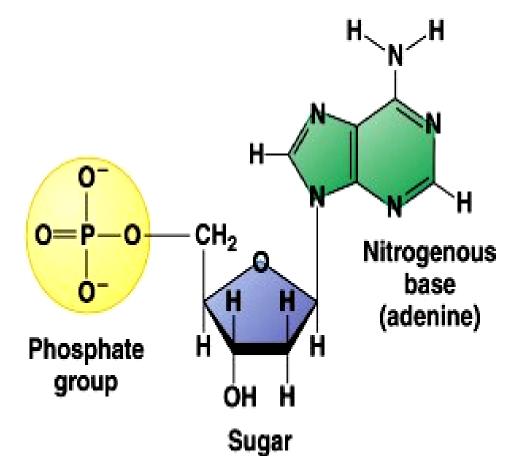


#### **Protein structure**

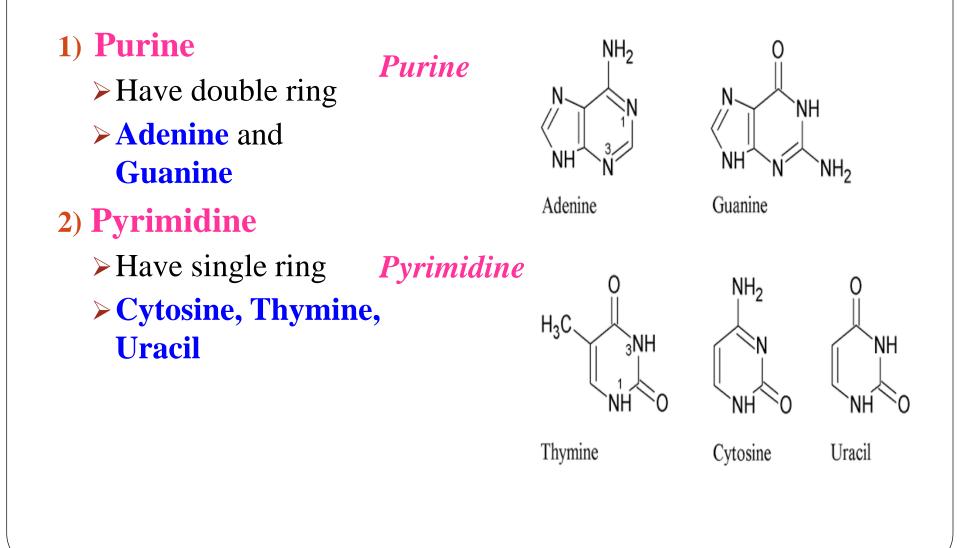


Primary Protein Structure Sequence of a chain of amino acids

Secondary Protein Structure Local folding of the polypeptide chain into helices or sheets Tertiary Protein Structure three-dimensional folding pattern of a protein due to side chain interactions Quaternary Protein Structure protein consisting of more than one amino acid chain

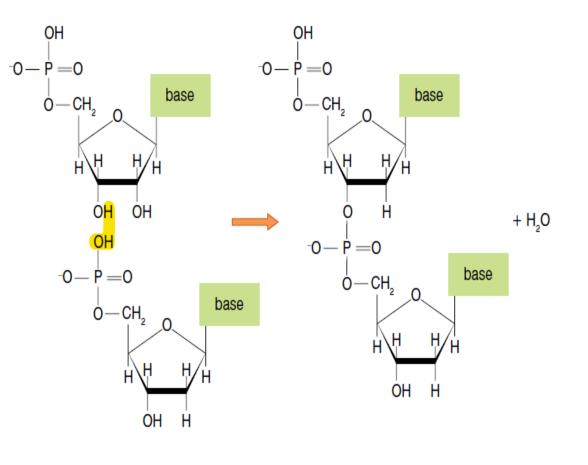

## **IV. NUCLEIC ACIDS**

Nucleic acid are the forth major organic compound.


- They are molecule which make up genetic material of the cell.
- Nucleic acids allow organisms to transfer genetic information from one generation to the next.
- There are two class of nucleic acids found in cells
   DNA or Deoxyribo nucleic Acid
   RNA or Ribonucleic Acid:
- All nucleic acids are made up of the same monomer called nucleotides
- Nucleic acids are a polymer of nucleotides

#### **Components of nucleotides**

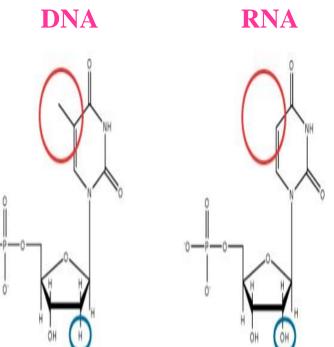
Nucleotides made up of three components: >Phosphate group >Pentose sugar >Nitrogenous bases Phosphate group and nitrogenous base are covalently bonded to sugar



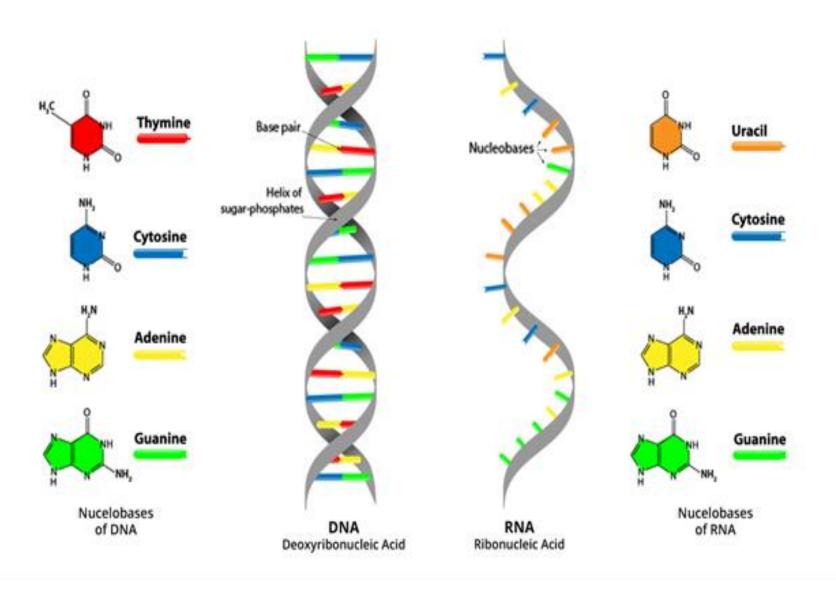

#### **Two types of nitrogenous bases**

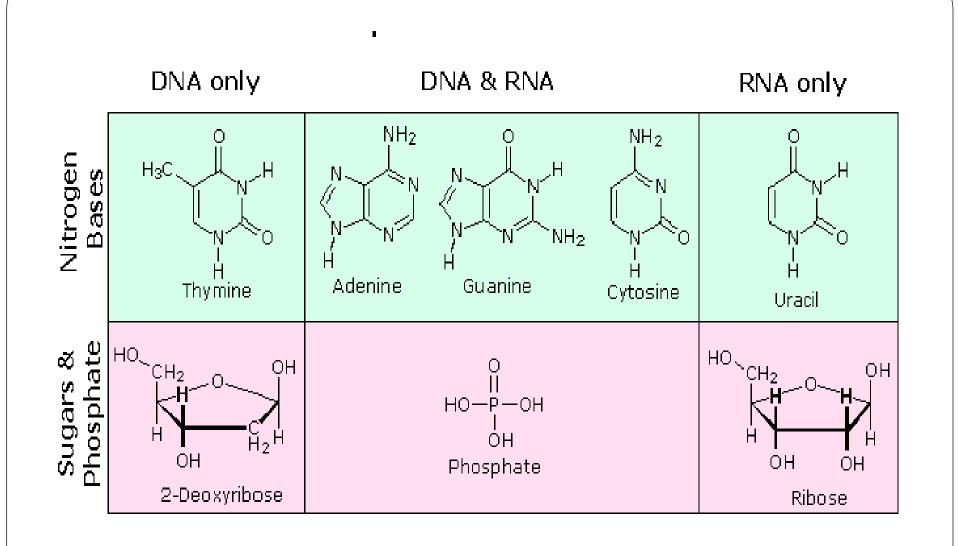


#### **Phosphodiester bond formation**


\* Phosphodiester **bond** is the bond that link two nucleotides The 'H' from the sugar on one nucleotide and **'OH'** from the **phosphate** on the other nucleotide are lost as water during phosphodiester bond formation.




## Two class of nucleic acids


#### **\* DNA or Deoxyribo Nucleic Acid**

- DNA nucleic acid containing the genetic information
- DNA is made up of two polynucleotic chain.
- DNA molecule has twisted double he structure
- DNA back bone is made of deoxyribose sugar and phosphate.
- **\* RNA or Ribonucleic Acid** 
  - RNA composed of a single polynucleotide chain
  - RNA found both in the nucleus and th cytoplasm.
  - RNA is much smaller



#### The structure of DNA and RNA





| Feature        | DNA                                   | RNA                         |
|----------------|---------------------------------------|-----------------------------|
| Structure      | Double stranded molecule              | Single stranded molecule    |
| Sugar          | Deoxyribose                           | > Ribose                    |
| Nitrogen bases | Adenine, Thiamine,                    | Adenine, Uracil, Cytosine   |
|                | Cytosine and Guanine                  | and Guanine                 |
| Location       | Found in nucleus and                  | Found in nucleus and        |
|                | mitochondria                          | cytoplasm                   |
| Size           | ➤ Huge.                               | Much smaller.               |
| Stability      | <ul><li>Very stable</li></ul>         | ➤ Less stable               |
| Function       | DNA replicates and stores             | RNA transfer genetic        |
|                | genetic information                   | information from the        |
|                |                                       | nucleus to ribosome to make |
|                |                                       | protein                     |
| Base pair      | <ul><li>(Adenine - Thymine)</li></ul> | > (Adenine-Uracil)          |
|                | <ul><li>(Cytosine -Guanine)</li></ul> | ➤ (Cytosine-Guanine)        |

| Food test                               |                                        |                   |  |
|-----------------------------------------|----------------------------------------|-------------------|--|
| Food                                    | Reagent used                           | Positive result   |  |
| Carbohydrates                           |                                        |                   |  |
| ✤ Starch                                | ✤ Iodine solution                      | Blue black color  |  |
| <ul> <li>Reduced sugar. E.g.</li> </ul> | <ul> <li>Benedicts solution</li> </ul> | Orange /red /     |  |
| glucose                                 |                                        | precipitates      |  |
| ✤ Non-Reduced sugar.                    | ✤ Benedicts solution and               | Orange /red /     |  |
| E.g. sucrose                            | hydrochloric acid                      | precipitates      |  |
| Proteins                                |                                        |                   |  |
| ✤ Biuret test                           | <ul> <li>Biuret reagent</li> </ul>     | Purple color      |  |
| Lipids                                  |                                        |                   |  |
| <ul> <li>Emulsion test</li> </ul>       | <ul> <li>Ethanol solution</li> </ul>   | ✤ White or cloudy |  |
|                                         |                                        | layer             |  |
|                                         |                                        | Milky suspension  |  |

Reducing sugars will act as reducing agents in an alkaline solution because reduce copper (II) ions (blue) to copper (I) ions (brick red)