Hill Side School

Score	%
Tests	
Final	
Others	
Total	

Central Administrative office (CMC Campus)

Primary Division phone 011-646-69 40 High School Division Phone 011-646-36 88

Lem Campus (Lem Hotel Area)

Primary Division Phone 011-662 42 31/2

KG Campus (Kotebe Area)

Kindergarten Division Phone 011- 645 74 44

P.O.Box 21616 Addis Ababa, Ethiopia

Hillside @ ethionet.et

Full Name	Grade -11	Section	4th Quarter Final Exam
Subject – MATHEMATICS for NATURAL SC	CIENCE	Year: 2012 E.C	Time allowed 2.5 hrs.

ALL answers for ALL parts should be given on the separate answer sheet.

PARTE: Choose the correct answer and write the letter of your choice in BLOCK LETTERS on the Separate answer sheet provided. (Total of 40 pts.)

- 1. If x < 0, then the simplest form of the expression $\frac{x |x|}{x}$ is equal to
 - (A) 2x

(C) -2

(D) 0

- 2. If $f(x) = \frac{\sqrt{x+2}}{x+2}$ and $g(x) = \frac{1}{x} 2$, then f(g(x)) is equal to
 - (A) $\sqrt{x}-2$

- **(B)** $\sqrt{x} + 2$
- (C) \sqrt{x}

(D) $\frac{\sqrt{x}}{}$

- 3. Which one of the following is the domain of $f(x) = x \frac{x^2 + 1}{x^4 + x}$?
 - (A) $\Re / \{0\}$

- **(B)** $\Re/\{-1\}$ **(C)** $\Re/\{0,1\}$

- **(D)** $\Re / \{-1,0\}$
- **4.** What are the values of a and b which make the mathematical sentence $\frac{x+1}{r^2-9} = \frac{a}{r-3} + \frac{b}{r+3}$ true for all real numbers $x \neq 3, -3$?
 - **(A)** a = 1, b = 0
- **(B)** $a = \frac{1}{3}, b = \frac{3}{5}$ **(C)** $a = -\frac{2}{5}, b = 1$
- **(D)** $a = \frac{2}{3}, b = \frac{1}{3}$
- 5. What is the solution set of equation $1 \frac{5}{x^2 + 4} = \frac{x 1}{x^2 x} \frac{1}{x}$?
 - **(A)** $\{1,-1\}$

- (C) $\{-1\}$

- **(D)** $\{1, 2, -1\}$
- **6.** If $f(x) = \ln\left(\frac{x}{x-1} + 2\right)$, then for x > 1, which one of the following is the inverse of f?
 - (A) $f^{-1}(x) = \frac{e^x 2}{e^x 3}$

(C) $f^{-1}(x) = \frac{e^x - 2}{e^x + 1}$

(B) $f^{-1}(x) = \frac{e^x}{e^x + 1} - 2$

(D) $f^{-1}(x) = e^{\left(\frac{x}{x-1}\right)} - 2$

8.	Consider a circle whose center is on the x-axis. If a line given by $y = x$ is tangent to the circle at point						
	(2,2), what is the equation $(2,2)$	of the circle?					
	(A) $x^2 + y^2 = 8$		(C) $(x-2)^2 + y^2 = 4$				
	(B) $(x-4)^2 + y^2 = 8$		(D) $(x-1)^2 + y^2 = 5$				
9.	What is the vertex and the ed	a and the equation of the directrix, respectively, of the parabola $x + y^2 + 2y + 1 = 0$?					
	(A) $(0,-1), x = -\frac{1}{4}$		(C) $(0,-1), x = \frac{1}{4}$				
	(B) $(-1,0)$, $y = -\frac{1}{4}$		(D) $(-1,0)$, $y = \frac{1}{4}$				
10	Let the center of an ellipse	be at $(1,4)$ and two	of its vertices be at (10,4)	and $(1,2)$. What is the			
	equation of the ellipse?						
	(A) $4(x-1)^2 + 81(y-4)^2 = 3$	324	(C) $9(x-1)^2 + 4(y-4)^2 = 4$	4			
	(B) $(x-1)^2 + 9(y-4)^2 = 4$		(D) $2(x-1)^2 + 9(y-4)^2 = 4$	4			
11	11. The equation $x^2 - 4y^2 = -1$ represents						
	(A) a hyperbola with one of		gin.				
	(B) a parabola with vertex at	=	`				
	(C) a hyperbola with vertices	s at $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{2},0\right)$	0).				
	(D) a hyperbola with foci at	$\left(0, -\frac{\sqrt{5}}{2}\right)$ and $\left(0, \frac{\sqrt{5}}{2}\right)$	$\left(\frac{1}{2}\right)$.				
12	. Which of the following is an	asymptote to the hype	$erbola 4x^2 - y^2 + 2y = 5$				
	(A) $y = -2x + 1$	(B) $y = 2x - 1$	(C) $y = -\frac{1}{2}x + 1$	(D) $y = -\frac{1}{2}x - 1$			
13	13. Let $p(x): x^2 + x > 0$. Which of the following is not equivalent to $\neg(\exists x)(x^2 + x > 0)$?						
	$(\mathbf{A}) \left(\exists x \right) \neg \left(x^2 + x > 0 \right)$	$(B) (\forall x)(x^2 + x < 0)$	$ (\mathbf{C}) (\exists x) (x^2 + x \le 0) $	$(D) (\forall x) (x^2 + x \le 0)$			
14	14. If compound proposition $(p \land q) \Rightarrow (\neg s \lor r)$ is false, which of the following is true?						
	(A) $s \Rightarrow r$	(B) $\neg p \lor \neg s$	(C) $(p \land \neg q) \Rightarrow r$	(D) $p \wedge r$			
15	The population $a, b, 8, 5, 7$	has a mean of 6 and	variance of 2. If $a > b$, then	the values of a and b			
	respectively are						
	(A) 7 and 3	(B) 8 and 2	(C) 9 and 1	(D) 6 and 4			

7. The line ℓ passes through (0,5) and (-5,0). What is the measure of the angle between the y-axis and

(B) $\frac{\pi}{3}$ **(C)** $\frac{\pi}{2}$

(D) $\frac{3}{2}\pi$

the line ℓ ?

 $(\mathbf{A})\,\frac{\pi}{4}$

16. Let $A = \begin{pmatrix} -2 & 0 & x \\ 2y & x+y & -4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -y \\ 0 & 3 \\ 1-x & 2 \end{pmatrix}$ such that $A + 2B^{T} = 0$. Then which one of the

following is the value of y?

(A) 0

- **(B)** $-\frac{13}{2}$
- **(C)** -8

- (**D**) any real number.
- **17.** If $A = \begin{pmatrix} 4 & -3 \\ -1 & x \end{pmatrix}$ is an invertible matrix and $|A^{-1}| = 1$, then what is the value of x?
 - **(A)** 1

(C) 11

(D) 17

- **18.** What is the inverse of $A = \begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix}$?
 - (A) $\begin{pmatrix} 1 & -2 \\ \frac{3}{2} & -\frac{5}{2} \end{pmatrix}$ (B) $\begin{pmatrix} -1 & 2 \\ \frac{3}{2} & \frac{5}{2} \end{pmatrix}$ (C) $\begin{pmatrix} \frac{3}{2} & -\frac{5}{2} \\ \frac{1}{2} & \frac{2}{2} \end{pmatrix}$

- **(D)** $\begin{pmatrix} -1 & -2 \\ \frac{3}{2} & \frac{5}{2} \end{pmatrix}$
- **19.** Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha \\ 1 & \alpha & \beta \end{pmatrix}$. Which one of the following is equal to the det(A)?
 - $(\mathbf{A})(1-\alpha)(\beta-\alpha)$
- **(B)** $(1-\beta)(\alpha-\beta)$ **(C)** $(1-\alpha)(\alpha-\beta)$
- (**D**) $(\beta-1)(\alpha-\beta)$

- **20.** The solution set of the system $\begin{cases} x 3y = 5 \\ y + z = 1 \end{cases}$ is
 - **(A)** $\{(2,-1,2)\}$
- **(B)** $\{(5,0,1)\}$

- **21.** Let A and B be 3×3 matrices such that $A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & -1 & \frac{1}{1} \end{pmatrix}$ and $|B| = \frac{1}{10}$. Which one of the following is

equal to $|2AB^T|$?

(A) 1

(B) 4

(C) 100

- **(D)** 400
- 22. Which one of the following is the simplest form of $\frac{4-3i}{3+4i} + \overline{1-2i}$?
 - **(A)** 1+i

- **(B)** 1+3i
- (C) 2-i

- **(D)** 1-3i
- **23.** In the set of complex numbers, the solution set of $x^2 2x + 5 = 0$ is
 - **(A)** $\{2+4i, 2-4i\}$
- **(B)** $\{2+i,2-i\}$
- (C) $\{1+2i,1-2i\}$
- (D) ϕ

- **24.** For $i = \sqrt{-1}$, the simplest form of the expression $i^{99} + i^{38} + 1$ is
 - $(\mathbf{A}) i$

- **(B)** -i+1

(D) -2i

25. The value of x and y that satisfy the equation $(2x - yi)(3 + i) = 20i$								
(A) $x = 0, y =$	-20	(B) $x = 3, y = 7$	7	(C) <i>x</i>	=1, y =	-6		(D) $x = -5, y = 3$
26. The polar form	m of $\frac{7-i}{3-4i}$ is							
$(\mathbf{A})\sqrt{2}\bigg(\cos\frac{\pi}{2}$	$\left(\frac{1}{2} + i\sin\frac{\pi}{2}\right)$			(C) 2	$\cos\frac{\pi}{2}$	$+i\sin\frac{\pi}{2}$		
(B) $\sqrt{2} \left(\cos \frac{\pi}{4} \right)$	$\left(\frac{1}{4} + i\sin\frac{\pi}{4}\right)$			(D) 2	$\cos\frac{\pi}{4}$	$+i\sin\frac{\pi}{4}$		
 27. A three-digit library ID-card is to be printed from the numbers 0,1,2,3,4,5 and 6 in a such a way that the first is non-zero and no number is to be repeated. How many such cards can be printed? (A) 180 (B) 216 (C) 210 (D) 343 								
(A) 180 28. A student ne	eds to select t	(B) 216 hree books from	m 4 d	` /		matics,	4 differ	(D)343 rent Physics and one
								e other two are either
Physics or Ge	ography books	?						
(A) $\frac{10}{21}$		(B) $\frac{19}{21}$			(C) $\frac{13}{2}$	3		(D) $\frac{17}{21}$
29. The following frequency distribution displays the age of students in a certain primary school.					ary school.			
	AGE		8	10	11	12	13]
	MUMDED OF	CTUDENTS	E	1.5	8	10		
	NUMBER OF	STUDENTS	5	15	8	10	2	
						•	•	•
Which one of the following is NOT true about the data?								
(A) The medi	an is 10.5			(C) Th	ne mean	is 10.6.		
(B) The mode	is 10.			(D) Th	ne range	is 5.		
30. If $(\neg p \lor q) \Rightarrow (r \land \neg r)$ is true, then which of the following is necessarily true?								

(A) $r \Rightarrow q$

- **(B)** $(q \Rightarrow p) \land r$ **(C)** $p \land \neg r$

- **(D)** $(q \wedge r) \Rightarrow p$
- **31.** If the truth value of $(p \land \neg p) \Rightarrow [(q \lor \neg q) \Rightarrow r]$ is true, then which one of the following must be true?
 - **(A)** *p*

- $(\mathbf{C}) \neg q$

- **(D)** q
- **32.** Suppose the proposition $p \Rightarrow \neg q$ is false (F), which of the following is true?
 - $(\mathbf{A}) \neg q \land (p \Rightarrow q)$
- **(B)** $\neg p \lor (q \Rightarrow \neg p)$ **(C)** $(\neg q \lor p) \Leftrightarrow q$
- **(D)** $(q \lor p) \Leftrightarrow \neg p$
- **33.** Which one of the following is NOT true about the graph of $f(x) = \frac{x^2 1}{x^2 + 1}$?
 - (A) The range of f is $(-\infty,1)$

(C) The line y = 1 is a horizontal asymptote.

(B) f is an even function

(D) As $x \to -\infty$, $f(x) \to 1$

34. If $\vec{A} = (3, -3)$ and $\vec{B} = ($	(1,-3), what is the unit vec	tor in the direction o	f the unit vector in the direction
of $\vec{C} = 3\vec{A} - \vec{B}$?			
$(\mathbf{A}) \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right)$	$(B) \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}} \right)$	$(\mathbf{C})\left(\frac{4}{5}, -\frac{3}{5}\right)$	$(\mathbf{D})\left(-\frac{6}{10},\frac{8}{10}\right)$
35. If \vec{u} is a vector in the	direction of the vector \vec{v} =	=(-3,4) having leng	th three times the length of the
vector $\vec{u} - \frac{3}{2}\vec{v} - 2\vec{j}$, who	ere \vec{j} is the unit vector in the	ne direction of the po	sitive y-axis?

(A) $\frac{1}{2}\sqrt{185}$

- **(B)** $\frac{1}{2}\sqrt{145}$ **(C)** $\frac{21}{2}$

- **(D)** $\frac{17}{2}$
- **36.** Consider the circle given by $x^2 + y^2 = 2$ and the line ℓ given by the parametric vector equation (x, y) = (2,0) + t(-1,1). Which of the following is true?
 - (A) The line ℓ is tangent to the circle at $\left(\frac{1}{2}, \frac{\sqrt{7}}{2}\right)$.
 - **(B)** The line ℓ intersects with the circle at two distinct points.
 - (C) The line ℓ and the circle have no common points.
 - **(D)** The distance from the center of the circle to the line ℓ is $\sqrt{2}$.
- **37.** Which one of the following is not equal to the expression $(1 + \tan^2 x) \sin \left(x \frac{3}{2}\pi\right)$?
 - (A) $\sec x$

- **(B)** $\cos x$
- (C) $-\sec x$

- **(D)** $-\cos x$
- **38.** What are the period and amplitude of the function $f(x) = \frac{1}{2} \sin\left(3 \frac{2\pi}{3}x\right)$, respectively?
 - $(\mathbf{A}) \frac{2}{3}\pi, \frac{1}{2}$
- **(B)** $\frac{2}{2}$, 2
- (C) $3, \frac{1}{2}$

- **(D)** $\frac{3}{2}\pi$,1
- **39.** The solution set of the equation $\sin 3x = 1$ in the interval $\left[0, \frac{\pi}{2}\right]$ is
 - (A) $\left\{\frac{\pi}{2}\right\}$

- $(\mathbf{B}) \left\{ \frac{\pi}{3}, \frac{\pi}{2} \right\} \qquad (\mathbf{C}) \left\{ \frac{\pi}{6} \right\}$

- **(D)** $\left\{-\frac{\pi}{2}, \frac{5\pi}{6}\right\}$
- **40.** If θ is a fourth quadrant angle and $Sec \theta = \sqrt{2}$, then what is $Csc \theta$ equals to?
 - (A) $-\frac{\sqrt{2}}{2}$

- **(B)** $-\sqrt{2}$ **(C)** $\frac{\sqrt{2}}{2}$

(D) $\sqrt{2}$

PART II: Fill in the blank spaces with a correct item that completes the sentence best.

- 1. The coefficient of the term x^2y^3 in the expansion of $(2x+5y)^5$ is ______.
- 2. The standard deviation of the dataset **20**, **16**, **12**, **8**, **18**, **5**, **9**, **24** is ______.
- 3. If $\vec{u} = 3i + \frac{5}{2}j$ and $\vec{v} = \frac{7}{2}i \frac{1}{4}j$, then the modulus of the vector $\vec{w} = 2\vec{u} \vec{v}$ is equal to_____.
- **4.** The image of the circle $x^2 + y^2 2x + 3y = 8$ after being reflected by the line y = 2x 3 is _____
- **5.** If A is a square matrix of order 3 and det(A) = 5, then the value of $det(A \times adj(A))$ is _____

PART III: Work out each of the following questions clearly and neatly. Answers without sufficient supporting work will receive no credit. (Total of 5 Points)

- 1. Find the solution set of the trigonometric equation $\sqrt{3}Sin 2x = Cos 2x$ in the interval $[0, 2\pi]$.
- 2. Find the values of A, B and C that make the following mathematical statement true for all $x \neq 0$.

$$\frac{x-1}{x^3 + x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

- 3. Given the second-degree equation $3x^2 6x = y^2$.
- (a) Identify what the equation represents to.
- (b) Sketch the graph of curve.

THE PLANET IS YOURS AND SO IS THE FUTURE, SO BE SAFE!

