Hill Side School Excel with our suppor

Score	%
Tests	
Final	
Others	
Total	

Central Administrative office (CMC Campus)

Primary Division phone 011-646-69 40 High School Division Phone 011-646-36 88

Lem Campus (Lem Hotel Area)

Primary Division Phone 011-662 42 31/2

KG Campus (Kotebe Area)

Kindergarten Division Phone 011-645 74 44

P.O. Rox 21616 Addis Ababa, Ethiopia

Hillside @ ethionet et

1.0.00	2101011444511040	и, Итори	musuc e emonence
Full Name	Grade -11	Section	4th Quarter Final Exam
Subject - MATHEMATICS for SOCIAL SC	IENCE	Year: 2012 E.C	Time allowed 2.5 hrs.

ALL answers for ALL parts should be given on the separate answer sheet.

PARTUE Choose the correct answer and write the letter of your choice in BLOCK LETTERS on the Separate answer sheet provided. (Total of 40 pts.)

- 1. If x < 0, then the simplest form of the expression $\frac{x |x|}{x}$ is equal to
 - (A) 2x

(D) 0

- 2. If $f(x) = \frac{\sqrt{x+2}}{x+2}$ and $g(x) = \frac{1}{x} 2$, then f(g(x)) is equal to
 - (A) $\sqrt{x}-2$

- **(B)** $\sqrt{x} + 2$ **(C)** \sqrt{x}

(D) $\frac{\sqrt{x}}{}$

- 3. Which one of the following is the domain of $f(x) = x \frac{x^2 + 1}{x^4 + x}$?
 - (A) $\Re / \{0\}$

- **(B)** $\Re / \{-1\}$
- (C) $\Re/\{0,1\}$

- **(D)** $\Re / \{-1,0\}$
- **4.** What are the values of a and b which make the mathematical sentence $\frac{x+1}{r^2-9} = \frac{a}{r-3} + \frac{b}{r+3}$ true for all real numbers $x \neq 3, -3$?
 - **(A)** a = 1, b = 0
- **(B)** $a = \frac{1}{2}, b = \frac{3}{5}$ **(C)** $a = -\frac{2}{5}, b = 1$ **(D)** $a = \frac{2}{3}, b = \frac{1}{3}$

- 5. What is the solution set of equation $1 \frac{5}{r^2 + 4} = \frac{x 1}{r^2 r} \frac{1}{r}$?
 - **(A)** $\{1,-1\}$

- **(B)** {2}
- (C) $\{-1\}$

- **(D)** $\{1, 2, -1\}$
- **6.** If $f(x) = \ln\left(\frac{x}{x-1} + 2\right)$, then for x > 1, which one of the following is the inverse of f?
 - (A) $f^{-1}(x) = \frac{e^x 2}{e^x 3}$

(C) $f^{-1}(x) = \frac{e^x - 2}{e^x + 1}$

(B) $f^{-1}(x) = \frac{e^x}{e^x + 1} - 2$

(D) $f^{-1}(x) = e^{\left(\frac{x}{x-1}\right)} - 2$

(A) $(0,-1), x = -\frac{1}{4}$		(C) $(0,-1), x = \frac{1}{4}$	
(B) $(-1,0)$, $y = -\frac{1}{4}$		(D) $(-1,0), y = \frac{1}{4}$	
10. Let the center of an ellipse	be at $(1,4)$ and tw	yo of its vertices be at (10,4	4) and $(1,2)$. What is the
equation of the ellipse?			
(A) $4(x-1)^2 + 81(y-4)^2 =$	324	(C) $9(x-1)^2 + 4(y-4)^2$	$^{2}=4$
(B) $(x-1)^2 + 9(y-4)^2 = 4$		(D) $2(x-1)^2 + 9(y-4)^2$	$r^{2} = 4$
11. The equation $x^2 - 4y^2 = -1$	represents		
(A) a hyperbola with one of(B) a parabola with vertex a		origin.	
(C) a hyperbola with vertice	s at $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{2},0\right)$	$\left(\frac{1}{2},0\right)$.	
(D) a hyperbola with foci at	$\left(0, -\frac{\sqrt{5}}{2}\right)$ and $\left(0, -\frac{\sqrt{5}}{2}\right)$	$\left(\frac{\sqrt{5}}{2}\right)$.	
12. Which of the following is an	n asymptote to the hy	$yperbola 4x^2 - y^2 + 2y = 5$	
(A) $y = -2x + 1$	(B) $y = 2x - 1$	(C) $y = -\frac{1}{2}x + 1$	(D) $y = -\frac{1}{2}x - 1$
13. Let $p(x): x^2 + x > 0$. Which	of the following is	not equivalent to $\neg(\exists x)(x^2 + \exists x)$	+x>0)?
$(\mathbf{A}) \left(\exists x \right) \neg \left(x^2 + x > 0 \right)$			$\mathbf{(D)} \left(\forall x \right) \left(x^2 + x \le 0 \right)$
14. If compound proposition (p	$(\neg s \lor r) \Rightarrow (\neg s \lor r)$ is	false, which of the following	is true?
(A) $s \Rightarrow r$	(B) $\neg p \lor \neg s$	(C) $(p \land \neg q) \Rightarrow r$	(D) $p \wedge r$
15. The population $a, b, 8, 5, 7$ respectively are	' has a mean of 6 a	nd variance of 2. If $a > b$, t	then the values of a and b
(A) 7 and 3	(B) 8 and 2	(C) 9 and 1	(D) 6 and 4
ATHEMATICS 4th Quarter Fi		on Creade 44 (COOLAL C	CIFNCE) Page 2

7. The line ℓ passes through (0,5) and (-5,0). What is the measure of the angle between the y-axis and

8. Consider a circle whose center is on the x-axis. If a line given by y = x is tangent to the circle at point

9. What is the vertex and the equation of the directrix, respectively, of the parabola $x + y^2 + 2y + 1 = 0$?

(B) $\frac{\pi}{3}$

(2,2), what is the equation of the circle?

(C) $\frac{\pi}{2}$

(C) $(x-2)^2 + y^2 = 4$

(D) $(x-1)^2 + y^2 = 5$

(D) $\frac{3}{2}\pi$

the line ℓ ?

(A) $x^2 + y^2 = 8$

(B) $(x-4)^2 + y^2 = 8$

(A) $\frac{\pi}{4}$

16. Let $A = \begin{pmatrix} -2 & 0 & x \\ 2y & x+y & -4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -y \\ 0 & 3 \\ 1-x & 2 \end{pmatrix}$ such that $A + 2B^T = 0$. Then which one	n which one of the
---	--------------------

following is the value of y?

(A) 0

(B) $-\frac{13}{2}$

(C) -8

(D) any real number.

17. If $A = \begin{pmatrix} 4 & -3 \\ -1 & x \end{pmatrix}$ is an invertible matrix and $|A^{-1}| = 1$, then what is the value of x?

(C) 11

(D) 17

18. What is the inverse of $A = \begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix}$?

(A) $\begin{pmatrix} 1 & -2 \\ \frac{3}{2} & -\frac{5}{2} \end{pmatrix}$ (B) $\begin{pmatrix} -1 & 2 \\ \frac{3}{2} & \frac{5}{2} \end{pmatrix}$ (C) $\begin{pmatrix} \frac{3}{2} & -\frac{5}{2} \\ \frac{1}{2} & \frac{2}{2} \end{pmatrix}$

(D) $\begin{pmatrix} -1 & -2 \\ -\frac{3}{2} & \frac{5}{2} \end{pmatrix}$

19. Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha \\ 1 & \alpha & \beta \end{pmatrix}$. Which one of the following is equal to the det(A)?

(A) $(1-\alpha)(\beta-\alpha)$

(B) $(1-\beta)(\alpha-\beta)$ **(C)** $(1-\alpha)(\alpha-\beta)$

(D) $(\beta-1)(\alpha-\beta)$

20. The solution set of the system $\begin{cases} x-3y=5\\ y+z=1\\ -x+y-z=0 \end{cases}$ is

(A) $\{(2,-1,2)\}$

(B) $\{(5,0,1)\}$ **(C)** $\{(-13,-6,7)\}$

21. Let A and B be 3×3 matrices such that $A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & -1 & \frac{1}{2} \end{pmatrix}$ and $|B| = \frac{1}{10}$. Which one of the following is

equal to $|2AB^T|$?

(A) 1

(B) 4

(C) 100

(D) 400

22. Which one of the following is the simplest form of $\frac{4-3i}{3+4i} + \overline{1-2i}$?

(A) 1+i

(B) 1+3i

(D) 1-3i

23. In the set of complex numbers, the solution set of $x^2 - 2x + 5 = 0$ is

(A) $\{2+4i, 2-4i\}$

(B) $\{2+i,2-i\}$ **(C)** $\{1+2i,1-2i\}$

 $(\mathbf{D}) \phi$

24. The value of x and y that satisfy the equation (2x - yi)(3 + i) = 20i are

(A) x = 0, y = -20

(B) x = 3, y = 7 **(C)** x = 1, y = -6

(D) x = -5, y = 3

25. For $i = \sqrt{-1}$, (A) $-i$	_	rm of the express $(\mathbf{B}) -i +1$		$+i^{38}+1$ (C) $-i$				(D) −2 <i>i</i>
26. The polar form of $\frac{7-i}{3-4i}$ is								
(A) $\sqrt{2} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$ (C) $2 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$								
(B) $\sqrt{2} \left(\cos \frac{\pi}{2} \right)$	(B) $\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ (D) $2 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$							
27. A three-digit library ID-card is to be printed from the numbers 0,1,2,3,4,5 and 6 in a such a way that the first is non-zero and no number is to be repeated. How many such cards can be printed? (A) 180 (B) 216 (C) 210 (D) 343								
Geography b		e probability tha						ent Physics and one e other two are either
(A) $\frac{10}{21}$		(B) $\frac{19}{21}$			(C) $\frac{13}{21}$			(D) $\frac{17}{21}$
29. The followin	g frequency dis	tribution displays	s the ag		41		in prim	
	AGE		8	10	11	12	13	
	NUMBER OF	STUDENTS	5	15	8	10	2	
								ı
Which one of	f the following	is NOT true abou	it the da	ıta?				
(A) The med				(C) The				
(B) The mode is 10. (D) The range is 5. 30. If $(\neg p \lor q) \Rightarrow (r \land \neg r)$ is true, then which of the following is necessarily true?								
$(\mathbf{A}) \ r \Rightarrow q$	` ,	(B) $(q \Rightarrow p) \land$						(D) $(q \wedge r) \Rightarrow p$
31. If the truth value of $(p \land \neg p) \Rightarrow [(q \lor \neg q) \Rightarrow r]$ is true, then which one of the following must be true?								
(A) <i>p</i>		(B) $\neg r$		(C) ¬q				(D) q
32. Suppose the								
$(\mathbf{A}) \neg q \land (p)$	$(\mathbf{A}) \neg q \land (p \Rightarrow q) \qquad (\mathbf{B}) \neg p \lor (q \Rightarrow \neg p) (\mathbf{C}) (\neg q \lor p) \Leftrightarrow q \qquad (\mathbf{D}) (q \lor p) \Leftrightarrow \neg p$						(D) $(q \lor p) \Leftrightarrow \neg p$	
33. Which one of the following is NOT true about the graph of $f(x) = \frac{x^2 - 1}{x^2 + 1}$?								
(A) The range of f is $(-\infty,1)$ (C) The line $y=1$ is a horizontal asymptote.								
(B) f is an even function (D) As $x \to -\infty$, $f(x) \to 1$								
		accomplish a joed in 8 days less t		days. A	At the s	ame rat	e by ho	w many workers can
(A) 21	be accomplishe	(B)18		(C)14				(D) 20
35. A 6% tax on								(D) D: 450
(A) Birr 330.	20	(B) Birr 61.20		(C) Biri	r 180.20)		(D) Birr 170
THEMATICS 4th	h Quarter Fii	nal Exam 2012	2 for G	rade i	11 (SO	CIAL	SCIEN	ICE) Page 4

		$3x - 4y \le 12$			
		$x + 2y \ge 4$			
	(A) No minimum	(B) 9	(C) 6	(D) 10	
37	. An electronics sales man h	nas Birr 80,000 to bu	y television and i	refrigerator. Suppose th	e unit price of
	television is Birr 15,000 and has bought three television remaining money?	-	_	•	
	(A)4	(B) 3	(C) 2	(D) 1	
38	. A sum of money, Birr 10,	,000 is deposited in	an account that p	bays 8% annual interes	t compounded
	semi-annually. Another Bi	rr 9,184 is deposited	in the same acco	unt after exactly one y	ear of the first
	deposited. How much (in B	Birr) is in the account	after 2 years?		
	(A) 20,824	(B) 20,864	(C) 21,632	(D) 21.	,846
39	. What is the percent markup	on selling price if the	e mark price on c	ost is 25%?	
	(A) 25%	(B) 20%	(C) 15%	(D) 30)%
40	. There are three children in	_		a five-year old child en	nters the room,
	then which of the following	g statement is correct	?		
	(A) The mean age will stay	the same, but the sta	ndard deviation w	ill decrease.	
	(B) The mean age will stay	the same, but the sta	ndard deviation w	ill increase.	
	(C) The mean age and the s				
	(D) The mean age and the s	tandard deviation wi	ll remain the same).	
PAR'	III: Fill in the blank s	paces with a corr	ect item that o	completes the sent	ence best.
1.	The coefficient of the term	x^2y^3 in the expansion	on of $(2x+5y)^3$ is	·	
2.	The standard deviation of the	he dataset 20, 16, 1	2, 8, 18, 5, 9, 24	is	
3.	The ratio of students to teach female teachers is 25, then				the number of
4.	The length of the major axi	is of the ellipse $x^2 + 9$	$9y^2 - 2x + 18y + 1 =$	= 0 is equal to	·
	If A is a square matrix of o				·
I	PART III: Work out eac	h of the followin	g questions cl	early and neatly. A	nswers
	without sufficient su	pporting work v	vill receive no	credit. (Total of 5	Point)
1.	Find the values of A, B and	C that make the foll	owing mathematic	cal statement true for all	$1 x \neq 0$.
	<u>x</u> -	$\frac{1}{x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$			
	$x^3 +$	$\frac{1}{x} - \frac{1}{x} - \frac{1}{x^2 + 1}$			
2.	Given the second-degree ed	$quation 3x^2 - 6x = y^2$	•		
	(a) Identify what the equation	ion represents to.			
	(b) Sketch the graph of cur	rve.			

36. The minimum value of the Objective function Z = 3x + 4y, subject to: $x \ge 1$ $y \ge 0$

3. An investment of Birr 3000 was made over 3 years at an interest rate of 5% with interest compounding annually. What are the **principal** at the start of the second year and the **interest** earned during the second year?

THE PLANET IS YOURS AND SO IS THE FUTURE, SO BE SAFE!

