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Chapter 1

Vectors

1.1 Vectors

Learning competencies

• Demonstrate an understanding of the difference between scalars and vectors and give
common examples.

• Explain what a position vector is.

• Use vector notation and arrow representation of a vector.

• Specify the unit vector in the direction of a given vector.

• Determine the magnitude and direction of the resolution of two or more vectors using
Pythagoras’s theorem and trigonometry.

• Add vectors by graphical representation to determine a resultant.

• Add/subtract two or more vectors by the vector addition rule.

• Use the geometric definition of the scalar product to calculate the scalar product of
two given vectors.

• Use the scalar product to determine projection of a vector onto another vector.

• Use the vector product to test for collinear and orthogonality vectors.

• Explain the use of knowledge of vectors in understanding natural phenomena.

1.1.1 Vector and Scalar quantities

Scalars are the physical quantities that have the only magnitude. Examples of scalars

are electric charge, density, mass etc. Vectors are physical Quatities that must be

described by both magnitude and direction.

Example: Velocity, Force, Torque, Electric field etc.

1



2 CHAPTER 1. VECTORS

1.1.2 Vector Representation

Vectors are represented in two methods (Analytical/Algebric) and Graphical/Geometrical)

1. Analytical methods: Vectors are representated analytically by a letter with an

arrow over its head or with bold face letter.

Example: Force =⇒
−→
F or F, Momentum =⇒

−→
P or P, Vector A =⇒

−→
A or A

2. Graphical/Geometrical methods: Graphically vectors are representated by a

straight line and arrow drown to the scale. The length of the line is the magnitude

of the vector and arrow tells us the direction.

1.1.3 Vector Addition and subsection

The sum of two or more vectos is called resultant vector (~R). Note that subtraction

is addition of the negative ie

~R = ~A− ~B = ~A+ (− ~B)

Vector addition is not simple algebraic addition of numbers that is handled with the

normal rules of arithmetic. It Obeys the laws of vector addition as follows

• The resultant of two vectos having the same direction is algebraic sum of the two

vectors with the same direction as both.

Example ~A = 8m East and ~B = 6m East then ~R = ~A+ ~B = 14m East

• The resultant of two vectors having opposite direction has magnitude equal to the

difference of magnitudes of the vectors and the resultant has the same direction

as the larger vector. Example: ~A = 8m East and ~B = 6m West then ~R =

~A+ (− ~B) = 2m East
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• The resultant of two vectors acting at right angle with each other is obtained

using Pythagorus theorem. Example: ~A = 8m East and ~B = 6m North then,

And then the magnitude of ~R obtained using Pythagorus theorem as

R2 = A2 +B2 + 2ABcosθ = A2 +B2 + 2ABcos900 = A2 +B2

R =
√

(8m)2 + (6m)2 = 10m

Direction of ~R obtained by trigonometery

tanθ =
Opp.

adj.
=
|B|
|A|

θ = tan−1(
B

A
) = tan−1(

6

8
) = 36.87o

• If the two vectors inclined at a certain anle θ to each other.

The magnitude of the vector ~R = ~A+ ~B is given by

|~R| =
√
A2 +B2 + 2ABcosθ

The magnitude of the vector ~R = ~A− ~B is given by

|~R| =
√
A2 +B2 − 2ABcosθ

And its direction is given by α = tan−1( Bsinθ
A+Bcosθ

)
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Or using sin law sin(1800−θ)
R

= sinα
B

or sinα = sin(1800−θ)
R

B

α = sin−1(B
sin(1800 − θ)

R
)

NB:

• If the vectors form a closed polygon when joined head to tail in a certain order,

their resultant is zero or null vector

• Two or more vectors are equal if and only if they are

– the same physical quantities

– have the same magnitude and

– have the direction

Class work

1.Given Vector ~A and ~B. Find the resultant vector ~R= ~A+ ~B

a) If the ~A = 4bunit East and ~B = 3unit East

b) If the ~A = 4bunit East and ~B = 3unit West

c) If the ~A = 4bunit East and ~B = 3unit north

d) If the ~A = 4bunit East and ~B = 3unit at 60o north of east
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2. A car travels 20.0km due north and then 35.0km in direction 600 west of north. Find

the magnitude and direction of the car’s resultant displacement. (ans ~S = 48.2km at

39.0o west of north).

1.1.4 Vector Components

Components of vectors are projection of vectors along coordinate axis (x, y, z-axis).

This meanse splitting vector into its Components. Consider the following figures.

From the figures we can see that Ax and By forms two sides of right angle triangle

with hypotenuse of length A. Using simple trigonometery (definition of sin and cosin)

we see that

Figure 1.1: Vector Components

cosθ =
Ax

| ~A|
=⇒ Ax = Acosθ

sinθ =
Ay

| ~A|
=⇒ Ay = Asinθ

Thus ~A = ~Ax + ~Ay for three dimension ~A = ~Ax + ~Ay + ~Az

1.1.5 Unit Vector

Unit vector is dimensionless vector with unit magnitude.

Â =
~A

| ~A|

Â read as A hat or caret is a unit vector that points in the direction of vector A. We

shall use the symbols î, ĵ and k̂ to representat a unit vector pointing in the positive x,

y and z direction respectively as we can see from the figure above.

• The unit vectors î, ĵ and k̂ in rectangular coordinate System. î, ĵ and k̂ are

mutually perpendiculr axes.
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Figure 1.2: Unit Vector in Rectangular Coordinat Axis

• In general Vector A in rectangular coordinate system can be written as the sum

of three vectors each which is parallel to a coordinate axes ~A = Axî+Ay ĵ +Azk̂

Addition and Subtraction of two vectors ~A and ~B can be written intermes of unit

vector as

~A+ ~B = (Axî+ Ay ĵ + Azk̂) + (Bxî+By ĵ +Bzk̂)

= (Axî+Bxî) + (Ay ĵ +By ĵ) + (Azk̂ +Bzk̂) = (Ax +Bx)̂i+ (Ay +By)ĵ + (Az +Bz)k̂

Class work

1. Given vectors ~A = 4mî + 3mĵ, ~B = 2mî − 3mĵ, ~C = 2mî + 3mĵ − 2mk̂ and

~D = 1mî− 2mĵ + 2mk̂. Find

a) | ~A| b) 2 ~A+ ~B − ~C

c) Unit vector in the direction of vector R such that 2~C + ~B − ~R = 0

2. A particle undergoes three consecutive displacements ~d1 = (15̂i+ 30ĵ + 12k̂)cm,

~d2 = (23̂i− 14ĵ − 5.0k̂)cm, ~d3 = (−13̂i+ 15ĵ)cm. Find

a) The components of the resultant displacement and its magnitude

b) Unit vector in the direction of resultant displacement

1.2 Multiplication of vectors

Vector multiplication refer to several operations between two (or more) vectors. It may

concern any of the following articles:

• Scalar-vector multiplication

• Dot product

• Cross product



1.2. MULTIPLICATION OF VECTORS 7

1.2.1 Scalar-vector multiplication

Multiplication of a vector by a scalar changes the magnitude of the vector, but leaves

its direction unchanged. The scalar changes the size of the vector. The scalar ”scales”

the vector.

For example, If

~A = axî+ ay ĵ + azk̂

Multiplied ~A by the scalar b is

b ~A = b(axî+ ay ĵ + azk̂) = baxî+ bay ĵ + bazk̂

Scalar multiplication obeys the following rules:

• Additivity in the scalar: (c+ d)~v = c~v + d~v;

• Additivity in the vector: c(~v + ~w) = c~v + c~w;

• Compatibility of product of scalars with scalar multiplication: (cd)~v = c(d~v);

• Multiplying by 1 does not change a vector: 1~v = ~v;

• Multiplying by 0 gives the zero vector: 0~v = 0;

• Multiplying by -1 gives the additive inverse: (−1)~v = −~v.

1.2.2 Dot product

The dot product of two vectors is the magnitude of one times the projection of the

second onto the first. The symbol used to represent this operation is a small dot at

middle height (·), which is where the name ”dot product” comes from. Since this

product has magnitude only, it is also known as the scalar product. Mathematically

defined as

~A · ~B = ABcos(θ)

where θ the angle btween ~A and ~B

Let

~A = axî+ ay ĵ + azk̂
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and

~B = bxî+ by ĵ + bzk̂

Figure 1.3: Dot Product

~A · ~B = (axî+ ay ĵ + azk̂) · (bxî+ by ĵ + bzk̂)

= axbxî · î+ ayby ĵ · ĵ + azbzk̂ · k̂

= axbx + ayby + azbz

since î · î = (1)(1)cos(0) = 1, ĵ · ĵ = (1)(1)cos(0) = 1 , k̂ · k̂ = (1)(1)cos(0) = 1 but

î · ĵ = ĵ · î = (1)(1)cos(900) = 0, ĵ · k̂ = k̂ · ĵ = (1)(1)cos(900) = 0 , k̂ · î = î · k̂ =

(1)(1)cos(900) = 0

Dot Product Properties of Vector:

• Dot product of two vectors is commutative i.e. ~A · ~B = ~B · ~A

• If ~A · ~B = 0 then it can be clearly seen that either ~A or ~B is zero or cos(θ) = 0.

• Also we know that using scalar product of vectors (p ~A) · (q ~B) = (p ~B) · (q ~A) =

pq( ~A · ~B)

• The dot product of a vector to itself is the magnitude squared of the vector i.e.

~A · ~A) = AAcos(0) = A2

• Distributive Property: ~A · ( ~B + ~C) = ~A · ~B + ~A · ~C

• Non-Associative Property: ~A · ( ~B · ~C) 6= ( ~A · ~B) · ( ~A · ~C), because the dot product

between a scalar and a vector is not allowed.
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1.2.3 Cross Product

The cross product of two vectors ~a and ~b is vector ~c which is perpendicular to both

~a and ~b and equal magnitude to the area of the parallelogram between ~a and ~b. The

symbol used to represent this operation is a large diagonal cross (×), which is where

the name ”cross product” comes from. Since this product has magnitude and direction,

it is also known as the vector product.

~a×~b = absin(θ)n̂

Figure 1.4: Cross Product

The vector n̂ (n hat) is a unit vector perpendicular to the plane formed by the two

vectors and θ is the angle between ~a and ~b. The direction of n̂ is determined by the

right hand rule.

Cross Product Properties :

• the cross product is distributive: ~a× (~b+ ~c) = (~a×~b) + (~a× ~c)

• the cross product is not commutative: ~a×~b 6= ~b× ~a

but ~a×~b = −~b× ~a

• the cross product of any vector with itself is zero: ~a× ~a = ~b×~b = 0

• cross product of any unit vector with itself is zero: î × î = (1)(1)sin(0) = 0,

ĵ × j = (1)(1)cos(0) = 0 , k̂ × k̂ = (1)(1)cos(0) = 0

• any cyclic product of the three coordinate axes is positive and any anticyclic

product is negative as shown bellow.
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Let

~a = axî+ ay ĵ + azk̂

and

~b = bxî+ by ĵ + bzk̂

~a×~b = (axî+ ay ĵ + azk̂)× (bxî+ by ĵ + bzk̂)

~a×~b = axî×bxî+axî×by ĵ+axî×bzk̂+ay ĵ×bxî+ay ĵ×by ĵ+ay ĵ×bzk̂+azk̂×bxî+azk̂×by ĵ+azk̂×bzk̂

~a×~b = 0 + (axby)k̂ − (axbz)ĵ − (aybx)k̂ + 0 + (aybz )̂i+ (azbx)ĵ − (azby )̂i+ 0

~a×~b = (aybz − azby) î+ (azbx − axbz)ĵ + (axby − aybx)k̂

Or using determinat form

~a ×~b =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

ax ay az

bx by bz

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ay az

by bz

∣∣∣∣∣∣ î +

∣∣∣∣∣∣az ax

bz bx

∣∣∣∣∣∣ ĵ +

∣∣∣∣∣∣ax ay

bx by

∣∣∣∣∣∣ k̂ = (aybz − azby) î + (azbx −

axbz)ĵ + (axby − aybx)k̂

Class work

1. Which of the following statements is true about the relation-ship between the

dot product of two vectors and the product of the magnitudes of the vectors? (a)

~A · ~B is larger than AB; (b) ~A · ~B is smaller than AB; (c) ~A · ~B could be larger

or smaller than AB, depending on the angle between the vectors; (d) ~A · ~B could

be equal to AB.

2. Which of the following is equivalent to the following scalar product: ( ~A × ~B) ·

( ~B × ~A)? (a) ~A · ~B + ~B · ~A (b) ( ~A × ~A) · ( ~B × ~B) (c) ( ~A × ~B) · ~(A × ~B) (d)

−( ~A× ~B) · ( ~A× ~B)
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3. Which of the following statements is true about the relationship between the

magnitude of the cross product of two vectors and the product of the magnitudes

of the vectors? (a) | ~A × ~B| is larger than AB; (b) | ~A × ~B| is smaller than AB;

(c) | ~A× ~B| could be larger or smaller than AB, depending on the angle between

the vectors; (d) | ~A× ~B| could be equal to AB.

4. Is the triple product defined by A ·(B×C) a scalar or a vector quantity? Explain

why the operation A · (B × C) has no meaning.

5. Vector A is in the negative y direction, and vector B is in the negative x direction.

What are the directions of (a) A×B (b)B × A?

6. Given M = 6̂i + 2ĵ − k̂ and N = 2̂i − ĵ − 3k̂ calculate the M ·N, M ×N and

the angle between M&N and.
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Chapter 2

Kinematics

Learning competencies

• Describe Kinematical terms such as distance, Displacement, average speed (velocities)

and instantaneous speed (velocity).

• Solve numerical problems involving average velocity and instantaneous velocity.

• Derive equations of motion for uniformly accelerated motion.

• Apply equations of uniformly accelerated motion in solving problems.

• Relate scientific concepts to issues in everyday life.

• Explain the science of kinematics underlying familiar facts, observations and related

phenomena.

• Describe the conditions at which freely falling bodies attain their terminal velocity.

• Define, Analyse and predict, terms in 2D motion

• Apply equations to solve problems related 2D motion.

• Distinguish between uniform and non-uniform circular motion.

• Analyse and predict, in quantitative terms, and explain uniform circular motion in the

horizontal and vertical planes with reference to the forces involved.

2.1 Kinematics of the particle

The word Kinematics comes from Greek word ”kinesis” meaning motion, thus

Kinematics: is a branch of mechanics that describes the motion of an object without refer-

13
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ence to couse of motion (force). It does not give any information about force that couses it

to move.

2.1.1 One or two dimensional (2D) motion

What is motion?

Motion is continuous change of position with time. Position is location of an object with

respect to a choosen reference frame or point. Reference frame, also called frame of

reference, in dynamics, system of graduated lines symbolically attached to a body that serve

to describe the position of points relative to the body.

In physics we are considered three type of motion

1. Translational motion: is type motion in which all points (parts) of an object move

the same distance in a given a given time. Example: A car moving in a straight line,

a bullet which gets fired moves in rectilinear motion, child going down, a bird flying in

the sky. In the above example, all the points of the body/object in motion are in the

same direction. Translational motion can be of two types, rectilinear and curvilinear.

Rectilinear motion is when an object in translational motion moves in a straight line

motion. When an object in translational motion moves along a curved path, it is said

to be in curvilinear motion

2 Rotational motion: is when an object moves about an axis and different parts of it

move by different distances in a given interval of time. Examples: blades of a rotat-

ing fan, merry-go-round, blades of a windmill. When an object undergoes rotational

motion, all its parts do not move the same distance in a given interval of time. For

example, the outer portion of the blades of a windmill moves much more than the

portion closer to the centre.

3 Vibrational motion: is when a body moves to and fro about its mean position

is called vibratory motion. Vibratory motion can be described as any object mov-

ing/swinging back and forth, moving up and down, pulsating, etc. Examples Pen-

dulums, swings, tuning forks, etc are of vibratory motion. Vibrational motion can be

periodic or non-priodic

2.1.2 Motion in 1D

This is motion of a particle along straight line in fixed direction (or motion along one coor-

dinate axis). Example: a car moving along a flat straight narrow road.
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p p x

xi xf ∆x = xf − xi

Definition of Kinematical terms

Distance and Displacement

Distance: is the total path length covered by the moving object.

Displacement: is change of position i.e the shortest distance between start and end of

motion. For example: a particle moving from point A to B as shown in figure below.

Figure 2.1: Comparison of Distance and Displacement

Speed and Velocity

Speed (v): is the rate of change of distance in a unit time.

Average Speed (vav): is total distance traveled by the total time required to cover the

distance.

vav =
total..distance

total..time

Velocity(~v): the rate of change of displacement as a function of time.

Average Velocity (~vav): is change of displacement ∆x divided by the time interval ∆t

during which the displacement occure.

~vav =
~xf − ~xi
tf − ti

=
∆~x

∆t

Instantaneous Velocity and Speed

Instantaneous Velocity v(t): is the Velocity of the particle at a given instant of time. It

is the limit of average velocity as ∆t approaches to zero.

v(t) = lim
∆t→0

∆x

∆t
= lim

∆t→0

~x(t+ ∆t)− ~x(t)

∆t
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This can be rewritten as frist derivatives of displacement with respect time.

v(t) =
dx

dt

The magnitude of Instantaneous velocity is instantaneous speed

Class work

1. Which of the following is true for displacement?

(a) It cannot be zero.

(b) Its magnitude is greater than the distance travelled by the object.

(c) displacement may or may not be equal to distance

2. If the displacement of the body is zero, the distance covered by it may not be zero.

3. In which of the following cases of motions, the distance moved and the magnitude of

displacement are equal ?

(a) If the object is moving along straight road

(b) If the object is moving along staight path

(c) The pendulum is moving back and fro

(d) The earth revolving around the sun

4. A particle moves along the x-axis according to the equation given below.

~x(t) = (4 + 2t− t2)mî

where t is in Second.

a) Determine the displacement of this particle between the time interval t = 0 and

t = 1s

b) Determine the average velocity during those two time intervals

c) Dirive a general expression for the instantaneous velocity as a function of time.

d) calculate instantaneous velocity at t = 2s.

5. A boy walk from his home to school at constant speed of 5m/s along straight line and

then back along the same line (road) from school to his home at constant speed of

6m/s.
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a) What is his average speed?

b) What is his average velocity?

Acceleration (~a): is the rate of change of velocity.

Average acceleration (~aav): is the change in velocity divided by time interval during which

it occure.

~aav =
xf − xi
tf − ti

=
∆x

∆t

Instantaneous acceleration ~a(t): is the acceleration of the particle at a given instant of

time. It is the limit of average acceleration as ∆t approaches to zero.

~a(t) = lim
∆t→0

∆v

∆t
= lim

∆t→0

~v(t+ ∆t)− ~v(t)

∆t

This can be rewritten as Second derivatives of displacement or first derivatives of velocity

with respect time.

~a(t) =
dv

dt
=
d2x

dt2

Class work

1. A particle moves along the x-axis component varies with time according to equation

given below.

~x(t) = (20− 2t+ t3)mî

where t is in Second.

a) Determine initial position of the particle.

b) Determine the displacement of this particle between the time interval t = 0 and

t = 1s; t = 1 and t = 4s

c) Determine the average velocity during those two time intervals

d) Dirive a general expression for the instantaneous velocity as a function of time.

e) calculate instantaneous velocity at t = 3s.

f) average acceleration between t = 2s to t = 3s.

g) Dirive a general expression for the instantaneous acceleration as a function of

time.

h) calculate instantaneous acceleration at t = 2s.
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Uniform Motion in 1D

Uniform Motion: A body is said to be in a state of uniform motion if it travels equal distances

in equal intervals of time. If the time distance graph is a straight line the motion is said to

be uniform motion. This meanse that the velocity of the body remain constant as it cover

equal distance in equal interval of time, in case of uniform rectilinear motion acceleration of

the body will be zero. Here, the avrage speed and instantaneous speed will be equal to the

actual speed; avrage velocity and instantaneous velocity will be equal to the actual velocity

and the magintude of velocity is equal speed.

~vav = ~v = ~v(t)

|~v| = v

∆x = ~v(t)t

Uniformely accelerated Motion in 1D

This is motion with constant acceleration ie velocity change with uniform rate.

~a(t) =
dv

dt
=
v − vi
t

= constant

v(t) = vi + at (2.1)

Average velocity for uniformely accelerated motion is given by

~vav =
~v + ~vi

2

Thus

~x− ~xi = ∆~xt = ~vavt = (
~v + ~vi

2
)t (2.2)

Using equation (2.1) into (2.2)

∆~x = (
~vi + at+ ~vi

2
)t

∆~x = vit+
1

2
at2 (2.3)

From equation (2.1)

t =
v − vi
a

(2.4)
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Using equation (2.4) into (2.2)

∆x = (
v + vi

2
)(
v − vi
a

) =
v2 − v2

i

2a

v2 = v2
i + 2a∆x (2.5)

Class work

1. An electron in a cathod ray tube accelerate uniformely from 2.0 × 104m/s to 6.0 ×

106m/s over 1.5cm.

a) How long does the electron take the to travel this 1.5cm?

b) What is its acceleration?

2. A track covers 40m in 8.5s while smoothely slowing down to a final speed of 2.8m/s.

Find

a) its original velocity

b) its acceleration

3. A jet lands on an air craft at 140mi/hr and stops in 2s due to an arresting cable that

snags the air plane.

a) What is its acceleration?

b) If the plane touches down at position xi = 0 what is the final position of the

plane?

4. A car traveling at constant speed of 45m/s passes a tropper hidden behind a billboard.

One second after the speeding car passes the billboard, the tropper sets out from the

billboard to catch it, accelerating at constant rate of 3.0m/s2. How long does it take

her to over take the car?

5. A jet plane lands with a speed of 100m/s and slow down at rate of 5m/s2 as it comes

to rest.

a) What is the time interval needed by the jet to come to rest?

b) Can this jet land on an airport where the runway is 0.8km long?
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Free falling bodies

A freely falling object is any object moving freely under the influence of gravity alone, re-

gardless of its initial motion.

Example: object thrown upward or down ward and object released from rest.

Free fall is motion with constant gravitational acceleration g = 9.81m/s2 toward the center

of the earth. So we can use equation of uniformely accelerated as in table below

When released from rest When thrown up When thrown down
vy = gt vy = voy − gt vy = voy + gt

∆y = 1
2
gt2 ∆y = voy − 1

2
gt2 ∆y = voy + 1

2
gt2

v2
y = 2g∆y v2

y = v2
oy − 2g∆y v2

y = v2
oy + 2g∆y

Class work

1. A girl thows a ball upwards, moving it an initial speed u = 15m/s. Neglect air resistance

a) How long does the ball take to return to the girl’s hand?

b) What will be its velocity then?

2. A ball is thrown upward. While the ball is in free fall, does its acceleration (a) increase

(b) decrease (c) increase and then decrease (d) decrease and then increase (e) remain

constant?

3. After a ball is thrown upward and is in the air, its speed (a) increases (b) decreases (c)

increases and then decreases (d) decreases and then increases (e) remains the same.
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2.1.3 Two dimension (2D) motion

2D motion is motion in a plane (This meanse object moving along two coordinate axis simul-

taneously, and its position can be described by two coordinate). Example: Projectile motion,

Circular motion

Figure 2.2: Motion in a plane

If a particle move from point A to point B in figure 2.2 its displacement is given by

∆~r = ~rB − ~rA

∆~r = (xB î+ yB ĵ)− (xAî+ yAĵ) = ∆xî+ ∆yĵ

For infintesmal change

d~r = dxî+ dyĵ

Average velocity (vav) is given by

~vav =
∆~r

∆t
=

∆x

∆t
î+

∆y

∆t
ĵ = ~vxî+ ~vy ĵ

Instantaneous velocity is given by

v(t) = lim
∆t→0

∆r

∆t
= lim

∆t→0

~r(t+ ∆t)− ~r(t)
∆t

v(t) = ~vx(t)̂i+ ~vy(t)ĵ

Average acceleration is given by

aav =
∆v

∆t
=

∆vx
∆t

î+
∆vy
∆t

ĵ
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Instantaneous acceleration

a(t) = lim
∆t→0

∆v

∆t
= lim

∆t→0

~v(t+ ∆t)− ~v(t)

∆t

a(t) = ~ax(t)̂i+ ~ay(t)ĵ

Class work

1. A bird flies in xy plane with velocity vector given by

~v = (α− βt2)̂i+ γtĵ

where α = 2.1m/s and γ = 2.8m/s2 and the positive y direction is vertically upward

at t = 0, the bird is at the origin.

a) Determine average acceleration between time interval t = 0 to 1s

b) calculate the general expression for instantaneous acceleration at any time t

c) What is the birds altitude (y cordinate) as it flies over x = 0 for the first time

after t = 0.

2.1.3.1 Projectile Motion

Projectile motion is motion of an object in a plan under the infuelence of gravity alone,

regardless of its initial motion(neglacting air resistance). Examples: A ball kicked from

the horizontal ground. The path followed by projectile motion is trajectory and downward

Figure 2.3: Projectil Motion

parabola due to gravitational acceleration and combination of horizontal and vertical velocity

as we can see in figure 2.3. As projectile motion is 2D motion we can regard it as two separate

and independent horizontal (x-component) and vertical (y-component) motion.
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Horizontal motion of projectile

Horizontal motion of projectile motion is uniform motion (velocity constant, ax = 0). Because

no net force act on horizontal motion of projectile motion. ie

v0x = v0cosθ

this is horizontal component of initial velocity.

vx = v0x = v0cosθ = constant

and

x(t) = v0xt = vxt = v0cosθt

Vertical motion of projectile

Vertical motion of projectile motion is uniformely accelerated motion. It is motion with

constant gravitational acceleration of g = 9.8m/s2 to ward the center of the earth. At the

origin

v0y = v0sinθ

this is vertical component of initial velocity.

Now we can use equation uniformely accelerated motion as

vy = v0y − gt

∆y =
(v0y + vy)

2
t

∆y = v0yt−
1

2
at2

v2
y = v2

0y − 2g∆y

But at the maximum height vy = 0 so

0 = v2
0y − 2gymax

ymax =
v2

0y

2g
=
v2

0sin
2θ

2g

Total time (t) is time of flight is given by

vy = v0y − gt
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but at ymax, vy = 0

0 = v0y − gta

ta =
v0y

g
=
v0sinθ

g

But total time is t = ta + td and ta = td thus

t =
2v0y

g
=

2v0sinθ

g

Range (R) is maximum horizontal displacement (xmax)

R = voxt = v0cosθ(
2v0sinθ

g
)

R =
v2

02cosθsinθ

g

R =
v2

0sin2θ

g

The maximum range is reached at an angle of projection θ = 450

R =
v2

0sin(2× 450)

g
=
v2

0sin(900)

g
=
v2

0

g

Figure 2.4: A projectile launched from the origin with an initial speed of 50 m/s at various
angles of projection. Note that complementary values of θi result in the same value of R
(range of the projectile).

Class work

1. A ball is kicked with an initial velocity if 40m/s from the ground at an angle of 300 to

the horizontal. (Use g = 10m/s2) Calculate

a) Horizontal and vertical component of initial velocity

b) The vertical velocity after t = 1s, 2s, 3s, and 4s
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c) Position (~r = xî+ yĵ) after t = 1s, 2s, 3s, and 4s

d) Time of flight (total time)

e) maximum height

f) Range of projectile

2. An air plane moving horizontally with velocity of 500km/hr at a height of 2km above

the ground dropped a bomb when it directly above the target. By how much distance

will the bomb miss the target?

3. An astronaut on a strange planet finds that she can jump a maximum horizontal

distance of 15.0m if her initial speed is 3.00m/s. What is the free-fall acceleration on

the planet?
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2.1.3.2 Circular Motion

Uniform Circular Motion

Uniform circular motion: is a type of motion in which an object moves in a circular path at

a constant speed. The direction of motion is constantly changing as the object moves around

the circle. For example, imagine a car moving around a circular racetrack at a constant speed

of 100 km/h. The car is always moving in a circle, and the direction of the car is constantly

changing as it goes around the track. However, the car’s speed is always the same, so the

car is said to be in uniform circular motion. Another example of uniform circular motion is

a planet orbiting around a star. The planet is constantly moving in a circular path around

the star, and its speed is constant as it moves around the orbit.

Figure 2.5: Uniform Circular Motion.

In uniform circular motion velocity is not constant because continuous variation of direction.

So the two triangle are similar by SÂS. For similar triangle the ratio of their side is equal

|∆~r|
|∆~v|

=
|~r|
|~v|
..or..

|∆~v|
|∆~r|

=
|~v|
|~r|

∆v =
v

r
×∆r
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Dividing bothside by ∆t
∆v

∆t
=
v

r
× ∆r

∆t

ac =
v

r
× v

ac =
v2

r

Thus ac is radial or centerpital accelaration and it is always toward the center of the

circle perpendiculr to velocity. Its magnitude is constant but its direction change continuous

perpendiculr to velocity. This accelaration is due to a centripetal force. A centripetal force

is a net force that acts on an object to keep it moving along a circular path and its direction is

toward the center the circle. Example: The tension force in the string of a swinging tethered

ball and the gravitational force keeping a satellite in orbit are both examples of centripetal

forces. Multiple individual forces can even be involved as long as they add up (by vector

addition) to give a net force towards the center of the circular path.

Period (T): it is time taken for one complete rotation.

T =
2πr

v

Non-uniform Circular Motion

Non-uniform circular motion is a type of circular motion in which the speed of an object

moving in a circular path changes at different points along the path. In other words, the

magnitude of the velocity vector of the object is not constant, meaning that the object is

accelerating even though it is moving in a circle.

An example of non-uniform circular motion is a car driving around a curved road. The

car’s speed may change as it navigates the curve, depending on factors such as the car’s

position on the curve and the road conditions. The car’s direction is constantly changing as

it moves around the curve, but the speed is not constant. As a result, the car is undergoing

non-uniform circular motion. Another example of non-uniform circular motion is a planet

orbiting a star, as the planet speeds up and slows down in its elliptical orbit. In this case

there are two type of acceleration:-

1. Radial or centerpital accelaration:- due to change of direction of motion

~ac =
v2

r

2. Tangential accelaration:- due to change magnitude of velocity. Its magintude is
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change of velocity over change of time.

~aT =
~vf − ~vi
tf − ti

=
∆v

∆t

Its direction is in the direction of Velocity which is perpendicular to centerpital acce-

laration. Thus total accelaration

~a = ~ac + ~aT

Its magintude

~a =
√

(~ac)2 + (~aT )2

Its direction

θ = tan−1

(
aT
ac

)
Class work

1. A ball tied to the end of a string 1m in length swings in a vertical circle under the

infuelence of gravity. When the string makesan angle of 200 its speed was 2m/s.

Calculate

a) magintude of centerpital accelaration

b magintude of centerpital Tangential accelaration

c) magintude and direction of of total accelaration



Chapter 3

Angular Motion

Learning competencies

• Describe the rotational kinematical quantities.

• Give the angular speed and angular velocity of a rotating body.

• Determine the velocity of a point in a rotating body.

• Derive equations of motion with constant angular acceleration.

• Use equations of motion with constant angular acceleration to solve related problems.

• State the law of conservation of angular momentum.

• Apply the law of conservation of angular momentum in Understanding various natural
phenomena, and solving problems.

• Express angular momentum as a cross product of r and p.

• Derive an expression for angular momentum in terms of I and ω.

• Use the relationship between torque and angular momentum, according to Newton’s
second law.

• Apply the relationship between torque and angular momentum to solve problems in-
volving rigid bodies.

3.1 Angular Motion

Angular motion is a type of motion that occurs when an object moves along a circular path

or rotates around a fixed axis. Angular motion is characterized by two main quantities:

angular displacement and angular velocity. Angular motion is important in many areas of

physics, including mechanics, electromagnetism, and quantum mechanics. It is also used in

many practical applications, such as in the design of engines, turbines, and other rotating

machinery.

29
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3.1.1 Rotational Kinematics

Angular displacement: is the change in the angle (θ) of rotation of an object with respect

to a fixed axis as we can see in figurebellow. Radian (rad) is SI unit of angular displacement,

one radian is angle sutended by an arc length equal to radius of the arc. The relation between

revolutio(rev), degree(deg or 0) and radian (rad)

2πrad = 3600 = 1rev (3.1)

Average Angular velocity: is the rate of change of the angular displacement of an object

with respect to time. Its represented by Greek letter ω. It is measured in radians per second

or (degrees per second or revolation per second) and is equal to the ratio of the change in

the angular displacement of the object to the time interval over which the change occurred.

~ω =
θ − θ0

t− t0
=

∆θ

∆t

Instantaneous Angular Velocity: It is average angular velocity as ∆t� o. This meanse

angular velocity at instant of time (for infintesmal change)

ω(t) =
dθ(t)

dt

Angular acceleration: the rate of change of the angular velocity of an object with respect

to time. It is denoted by Greek letter α.

Average angular acceleration (ωav): is the ratio of andgular velocity to time interval ∆t

during which the change occure.

~α =
~ω − ~ω0

t− t0
=

∆~ω

∆t
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Instantaneous Angular acceleration: It is average angular acceleration as ∆t� o. This

meanse angular acceleration at instant of time (for infintesmal change). Its SI unit is rad/s2

α(t) =
dω(t)

dt
=
d2θ(t)

dt2

Uniformley Accelarated Rotational Motion

Uniformly accelerated angular motion refers to the motion of an object rotating around an

axis at a constant rate of acceleration (α). This means that the angular velocity of the object

is changing at a constant rate over time. In this type of motion, the angular acceleration of

the object is constant, which means that the rate of change of the angular velocity is also

constant. The equation that describes this relationship is:

ω = ωo + αt (3.2)

For uniformly accelerated angular motion the average angular velocity is given by

ωav =
ω + ω0

2

Therefore

θ − θ0 = (
ω + ω0

2
)t (3.3)

Using all those together

θ = ω0t+
1

2
α2t2 (3.4)

and

ω2 = ω2
0 + 2αθ (3.5)

Class work

1. The angular position of a fly wheel of car engines is given by

θ = (2rad/s3)t3

the diametre of the flywheel is 0.36m.

a) Find the angle θ in radian, degree and revolution at time t12secandt2 = 5sec.

b) Find the distance that the particle of the rim moves during that time intervaly .

c) Find the average angular velocity in rad/s, and rev./m
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d) Find the general expression for the angular velocity at any time t.

e) Find the general expression for the angular accelaration at any time t.

2. A wheel rotates with angular acceleration of 3.5 rad/s2. If the angular speed of the

wheel is 2.0m/s at t=0.

a) through what angle doese the wheel rotate in 2.0s

b) what is the angular speed at t = 2.0s

Angular Momentum

The angular momentum (~L) of a moving particle with respect to a given axis is given by

~L = ~r × ~p

Where ~r is didtance from axis of rotation and ~p = m~v is linear momentum.

~L = ~r × ~p = ~r ×m~v = m~r × ~v

and we know that v = rω

~L = m~r × r~ω = mr2~ω

And we know that I = mr2

~L = I~ω (3.6)

Eqn. 3.6 is angular momentum. Taking time derivatives of equation 3.6

d~L

dt
= m~r × d~v

dt
= m~r × ~a = ~r × ~Fnet = ~τnet

Law of Conservation of Angular Momentum

This states that if the net external torque acting on the system is zero (the system is isolated

) then the angular momentum of the system is conserved (remain unchenged)

~Li = ~Lf

Iiωi = Ifωf (3.7)

Class work
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1. The position vector of a particle of mass 2kg is given as a function of time by ~r =

(6̂i + 5tĵ. Determine the angular momentum of the particle about the origin as a

function of time.

2. A large circular disk of mass 2kg and radius 0.2m initially rotating at 50rad/s is coupled

a smaller circular disk of mass 4kg and radius 0.1m initially rotating at 20rad/s in the

same direction as large disk.

a) Find the commen angular velocity after the disk are coupled.

b) Calculate the loss of kinetic energy during this collision.
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Chapter 4

Dynamics

Learning competencies

• Identify the four basic forces in nature.

• Define and describe the concepts and units related to force.

• Define the term dynamics.

• Define and describe the concepts and units related to coefficients of friction.

• Use the laws of dynamics in solving problems.

• Interpret Newton’s laws and apply these to moving objects.

• Explain the conditions associated with the movement of objects at constant velocity.

• Solve dynamics problems involving friction.

• Analyse, in qualitative and quantitative terms, the various forces acting on an object
in a variety of situations, and describe the resulting motion of the object.

• Describe the terms momentum and impulse.

• State the law of conservation of linear momentum.

• Discover the relationship between impulse and momentum, according to Newton’s sec-
ond law.

• Apply quantitatively the law of conservation of linear momentum.

• Distinguish between elastic and inelastic collisions.

• Describe head-on collisions.

• Describe glancing collisions.

• Define and describe the concepts and units related to torque.

• Describe centre of mass of a body.

• Determine the position of centre of mass of a body.

• Interpret Newton’s laws and apply these to objects undergoing uniform circular motion.

• Solve dynamics problems involving friction.

35
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4.1 Dynamics

Dynamics: In physics, dynamics is the branch of mechanics that deals with the study of

motion and the forces that cause or affect that motion. It involves the analysis of how an

object moves and the forces that cause it to move, including the study of the forces that

cause changes in the motion of an object, such as acceleration, deceleration, and changes

in direction. The fundamental concepts in dynamics are force, mass, and acceleration, as

described by Newton’s laws of motion. Dynamics is used to describe a wide range of physical

phenomena, from the motion of particles at the subatomic level to the motion of planets

in the solar system. It is used in many fields, including engineering, physics, and applied

mathematics, to understand and predict the behavior of physical systems.

Force is a physical quantity that describes an interaction between two objects that can

cause a change in motion of one or both objects. It is defined as the product of mass and

acceleration, or more formally as the rate of change of momentum with respect to time. It

is a push or a pull of an object (Intraction that change state of motion). We can’t see force

with our necked-eye but, in everyday life, we experience the following effects of force all the

time.

• Force set or tends to set an object to motion

• Force stop or tends to stop motion

• Force change direction of motion

• Force accelerate or decelerate motion

• Force change shape and size of materials

Type of force

Force usually catagorized into two

1. Contact Force: This is a force that requires physical contact between two objects in

order for the force to be applied. Examples: Frictional force, Tension force, Normal

force, Air resistance force, and Applied force.

2. Non-contact Force: This is a force that can act over a distance without any phys-

ical contact between the objects. Examples: Gravitational force, Magnetic force,

Electrostatic force, Electromagnetic force, Nuclear force.
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Newton’s Law of Motion

Newton’s laws of motion are three fundamental principles that describe the behavior of objects

in motion. They were first introduced by Sir Isaac Newton in his 1687 work ”Philosophiæ

Naturalis Principia Mathematica”. The laws are:, 1. Newton’s frist Law of motion (Law of

inertia), 2. Newton’s second law (Law of acceleration) and 3. Newton’s third law (action and

reaction force)

Newton’s first law: This states that ”Unless an external force exerted on the body the

state of motion the body remain as it is”. This is called law of inertia. Inertia: is the

tedencey of the body to resist its change of state of motion.

Newton’s second law: This states that ”accelaration of an object is directely proportional

to the net force acting on it and inversely proportional to is mass”.

∑
~F = m~a

∑
~F =

∑
~Fx +

∑
~Fy +

∑
~Fz = m(~ax + ~ay + ~az)

Newton’s third law: This states that ”if object A exert force on object B, then object B

exert a force on object A that is equal in magnitude and opposite in direction”. Thus force

always occure in pair. This pair of force are called action and reaction force. For every action

force there is reaction force. Action and reaction force are always:

• the same in magnitude

• opposite in direction

• act on different bodies

• the same type

Class work

1. Object of mass 10kg is exerted on by a force of ~F1 = (2̂i+ 3ĵ)N , ~F2 = (4̂i− 3ĵ)N and

~F3 = (−î+ 3ĵ)N , calculate

a) net force on this object

b) its accelaration

2. A 2kg object undergoes an accelaration of given by ~a = (3̂i + 4ĵ)m/s2. Find the

magnitude resultant of force.
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3. A particle of mass 2unit moves along space curve defined by ~r(t) = (4t2 − t3)̂i− 5tĵ +

(t4 − 2)k̂. Find the force acting on it at any time t.

4. Find the force needed to accelarate a mass of 400kg from velocity ~v0 = (4̂i−5ĵ+3k̂)m/s

to ~vf = (8̂i+ 3ĵ − 5k̂)m/s in 10s.

Friction Force

Friction force: is a force generated in opposite direction to the motion when solid object

slide or attempt to slid over each other. Its magnitude is given by

f = FNµ

Where µ is coefficient of friction (constant that depend on the nature of the surface in contact),

FN is normal force. There are two type of frictional force

• Static friction:- friction occure when object attempt to slid over each other but not

yet slid over each other. Its magnitude given

fs = FNµs

µs is coefficient of static friction

Kinetic friction:- friction force occure when object sliding over eachother

fs = FNµk

µk is coefficient of kinetic friction

NB µs > µk thus fs > fk

Normal Force (FN):- Is a force or component of force that is perpendicular to the surface

in contact and equal in magnitude to the force that holds the surface press together. Normal

force equal to mg when the sliding object is on horizontal surface and acted on by horizontal

force as shown in figure below. But if the force acted on the object is at a certain angle to

the horizontal the normal force is different as shown in figure below
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Class work

1. A 20kg block is initially at rest on a horizontal surface. A horizontal force of 75N is a

required to set the block in motion. After it is in motion a horizontal force of 60N is

required to keep the block moving with constant speed. Find the coefficient of static

and kinetic friction.

Applied Force:Applied force is a physical force that is applied to an object by a person or

another object. It is a force that causes an object to move, accelerate, or change direction.

Applied force is an important concept in physics and is used to describe many physical

phenomena, including the motion of objects, the behavior of fluids, and the behavior of

electromagnetic fields.

Gravitational force is the force by which a planet or other body draws objects toward its

center. The force is always attractive and acts along the line connecting the two bodies. The

force is proportional to the product of the two masses and inversely proportional to the square

of the distance between them. The proportionality constant is known as the gravitational

constant. The gravitational force is responsible for keeping the planets in orbit around the

sun and for keeping the moon in orbit around the Earth. The mathematical formula for the

gravitational force between two objects can be expressed using Newton’s law of gravitation:

F = G
m1m2

r2

where:

- F is the gravitational force between the two objects, measured in Newtons (N), - G is the

gravitational constant, which has a value of approximately 6.674× 10−11Nm2/kg2, - m1 and

m2 are the masses of the two objects in kilograms (kg), - r is the distance between the centers

of mass of the two objects, measured in meters (m)

A restoring force is a force that acts to bring an object back to its original position after

it has been displaced. In other words, it is a force that opposes displacement. For example,
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the force exerted by a spring when it is stretched or compressed is a restoring force. In a

simple harmonic motion, restoring force is directly proportional to the displacement and acts

in the direction opposite to the displacement.The mathematical expression of the restoring

force for a spring is:

F = −kx

where F is the restoring force, x is the displacement from the equilibrium position, and k is

the spring constant, which is a measure of the stiffness of the spring.

Another example of a restoring force is the force of gravity acting on a pendulum. The

restoring force of a pendulum is given by:

F = −mgsin(θ)

where F is the restoring force, m is the mass of the pendulum, g is the acceleration due to

gravity, and θ is the angle between the pendulum and the vertical. In general, the mathemat-

ical expression of the restoring force depends on the specific physical system being considered,

and can be derived from the laws of physics governing that system.

Application and Newton’s law of motion

In this case we apply Newton’s law to objects either in equilibrium (~a = 0) or accelarating

along straight line under action of constant force. The following procedure is recommanded

when dealing problems with involving Newton’s law.

1. Identify the object or particle on which force are exerted.

2. Identify the force exerted on the object (Draw free body diagram)

3. Decompose each force into their x,y and z-components.

4. Calculate net force, accelaration, velocity and so’on.
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Class work

1. A block of mass 10kg hungs from three cords as shown below

Figure 4.1: 10kg hungs from three cords

2. A block of mass m slids down an inclined plane as shown in the figure below.

Figure 4.2: mass m slids down an inclined plane

3. The block of mass m sliding horizontally as shown in figure below.

Figure 4.3: block of mass m sliding horizontally

4. Two object of unequal mass are hung vertically over a frictionless pully of negligible

mass as in figure below
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Figure 4.4: unequal mass are hung vertically over a frictionless pully

4.2 linear momentum

Linear momentum (~p) is defined as quality of an object to exert a force on any thing that

tries to change its state of motion. Linear momentum is an important concept in physics

because it is a measure of an object’s ability to cause change through its motion. For example,

a moving car has a lot of linear momentum and is able to do a lot of damage in a collision

because it is difficult to stop. On the other hand, a stationary car has no linear momentum

and is not able to cause much change through its motion. Its magnitude is the product of

mass of the system with its velocity.

~p = m~v (4.1)

For an objet’s in three dimension

~p = m(vxî+ vy ĵ + vzk̂) (4.2)

Linear momentum is a vector quantity, meaning it has both magnitude and direction. The

direction of an object’s linear momentum is the same as the direction of its velocity. Its SI

unit is kgm/s.

Impulse ( ~J): Impulse is defined as the product of the force acting on an object and the

time for which the force acts. Mathematically, impulse can be expressed as: From Newton’s

second law

~Fnet = m
∆v

∆t
=

∆

∆t
(m~v) =

∆~p

∆t
(4.3)

This can be rewritten as

∆~p = ~Fnet∆t = ~J (4.4)

Or

~Fnet =
∆~p

∆t
(4.5)
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This is the relation between ~p and resultant force acting on it.

4.2.1 Conservation of Momentum

When ever two or more particles in an isolated system (in which net external force acting on

the system is zero) intract, the total momentum of the system remain constant (conserved)

i e ∑
~pi =

∑
~pf (4.6)

m1 ~u1 +m2 ~u2 = m1 ~v1 +m2 ~v2 (4.7)

Where u1 & u2 are initial velocity of m1 and m2 respectively, and v1 & v2 are final velocity

of m1 and m2 respectively Thus

~pxi = ~pxf , ~pyi = ~pyf , ~pzi = ~pzf

Class work

1. A 60 kg archer stands at rest on a frictionless ice and fires a 0.5 kg arrow horizontally

at 50m/s. With what velocity doese archer move across the ice after firing the arrow?

4.2.2 Collision

Collision: is the event of two particles comming together for short time and thereby pro-

ducing impulsive force on each other. Collisions are an important topic in physics because

they can be used to understand a wide range of phenomena, from the behavior of subatomic

particles to the motion of celestial bodies in the universe. Depending on kinetic energy, the

Q-value and coefficient of restitution Collision grouped in two (1) Elastic Collision, and (2)

Inelastic Collision.

Elastic Collision

It is type of collision in which both kinetic energy and momentum are conserved.

m1u1 +m2u2 = m1v1 +m2v2 (4.8)

1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2 (4.9)
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The collision in which kinetic energy is fully conserved is called perfectely elastic collision.

Figure 4.5: perfectely elastic collision

Inelastic Collision

It is a type of collision in which only momentum is conserved but kinetic energy is not

conserved.

m1u1 +m2u2 = m1v1 +m2v2 (4.10)

1

2
m1u

2
1 +

1

2
m2u

2
2 6=

1

2
m1v

2
1 +

1

2
m2v

2
2 (4.11)

A collision in which a colliding object stick together after collision is called perfectely in-

elastic collision In this collision kinetic energy lost as a form of heat and sound during

Figure 4.6: perfectely inelastic collision

collision. This lost of kinetic enegy represented by Q-value. The Q-value is equal zero for

elastic collision and less than zero (Q < 0) for inelastic collision. Coefficient of restitution (e)

= u2−u1
v2−v1 is equal 1 for elastic collision and zero for inelastic collision.

Head-on Collisions: Collision, when objects rebound on straight line paths that

co-incide with original direction of motion. These collisions can be treated one dimen-

sionally.

Glancing Collisions: When Object do not collide on the same path line they make

glancing collision. To solve this problem, break it into components as shown in figure
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bellow.

Figure 4.7: Glancing Collision

Class work

1. A ball of mass 2 kg is moving with a velocity of 12m/s collides with a stationary ball

of mass 6 kg and comes to rest. Calculate velocity of ball of mass 6kg after collision.

2. A 10.0g bullet is fired into a stationary block of wood (m = 5.00kg). The bullet sticks

into the block, and the speed of the bullet-plus combination immedately after collision

is 0.600m/s. What was the original speed of the bullet?

3. A block of mass m1 = 1.6kg initially moving to the right with a speed of 4m/s on a

horizontal frictionless track collides with a block of mass m2 = 2.1kg initially moving

to the left with speed of 2.5m/s. If the collision is elastic, find the velocities of the two

block after collision?

4. A partcle of mass 4.0kg initially moving with velocity of 2.0m/s collides with a partcle

of mass 6.0kg, initially moving velocity of -4m/s. What are the velocity of the two

particle after collision?

5. A 4kg block moving right at 6m/s collides elastically with a 2kg moving at 3m/s left,

find final velocities the blocks.

4.3 Center of Mass and Moment of Inertia

4.3.1 Center of Mass

The center of mass of an object or system is the unique point at which the entire mass of the

object or system can be considered to be concentrated.It is the point about which the object
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or system will balance if it is supported at that point, and it is the point around which the

object or system will rotate if it is free to do so. In a system of particles, the center of mass

is the average position of all the particles in the system, weighted according to their masses.

It is a useful concept in mechanics because it allows the analysis of the motion of an object

or system as if all of its mass were concentrated at a single point. It is located somwher on

the line joining the partcle and closser to the larger mass. The center of mass of an object

or system can be found by taking the sum of the positions of all the particles in the system

multiplied by their masses, and then dividing by the total mass of the system. Center of mass

of several partcle with mass m1,m2, · · · ,mn at a distance ~r1, ~r2, · · · , ~rn from each other is

given by

~rcm =

∑n
i=1mi~ri∑n
i=1mi

=

∑n
i=1mi~ri
M

=
m1~r1 +m2~r2 + · · ·+mn~rn

m1 +m2 + · · ·+mn
(4.12)

Where

M =

n∑
i=1

mi = total.mass

For coordinate x, y and z, center of mass given by

~xcm =

∑n
i=1mixi
M

î, ..~ycm =

∑n
i=1miyi
M

ĵ..and..~zcm =

∑n
i=1mizi
M

k̂ (4.13)

This is known as the center of mass formula.The concept of center of mass is closely related

to other important concepts in mechanics, such as the center of gravity, which is the point

at which the gravitational force acting on an object or system can be considered to be

concentrated. In many cases, the center of mass and the center of gravity of an object or

system are at the same location, but this is not always the case, especially for objects or

systems that are not symmetrical.

4.3.2 Moment of Inertia

Moment of Inertia: is the a measure of body’s resistance to rotational motion about about

a particular axis. It is typically denoted by the symbol I and is measured in kg ∗ m2. Its

magnitude is affected by distribution of mass of the body in relation to its axis of rotation.

Thus there is no single value of moment of inertia of an object. But for a point mass moment

of inertia is given by

I = mr2
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Moment of inertia of a rigid object, made up of a particles of mass m1,m1, ... at respective

distance r1, r2, ... from its axis of rotation, its moment of inertial about that axis is given by

I = m1r
2
1 +m2r2 + ...mir

2
i =

∑
i

mir
2
i

For continuous mass distribution

I =

ˆ m

m0

r2dm

In general moment of inertia of a body depend on

• size of the body

• Shape of the body

For example consider disk and sphare of the same mass and the same radius.

I = 1
2mr

2 for uniform disk

I = 2
5mr

2 for uniform sphare

• It also depend on a point of axis of rotation

Example: For uniform rod axis of rotation through its center

I =
1

12
ML2

For uniform rod axis of rotation through its one end

I =
2

3
ML2

Class work

1. A system consists three partcles of m1 = 1kg, m2 = 1kg and m3 = 2kg located as in

figure below. Find the center of mass of the system.
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2. A partcles are connected by a light rod as shown bellow

3. Calculate moment of inertia of 4 equal masses be each having a mass of 50g and situated

at the corner of the square of side 30cm. when axis of rotation passes through

a) the center of the square perpendicular to the plane of the square

b) the center of the square perpendicular to sides of the square.

c) along the side of the square.

4.4 Torque and angular momentum

Torque: is defined as rotational effect of force ie (it is measure of force that couse an object

to rotate around an axis. Torque is represented by symbol (greek letter) ′τ ′. Torque is vector

quality with both magintude and direction. It is calculated by the product of force and

perpendicular distance from its axis of rotation.

~τ = Frsin(θ)n̂ = ~F × ~r

Where θ is the direction of line of action of force n̂ is unit vector in the direction of torque

(clockwise or anticlockwise), r is moment arm of force (point of application of force from axis

of rotation) F is applied.

Magintude of torque is depend on

– Size of force

– moment arm of force (radius or point of application of force)

– line of action of force (direction of line of action of force or θ)

Torque has maximum value when θ = 900 and zero when θ = 00or1800
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Torque intermes of angular accelarate From definition of Torue we have

τ = Fr ⊥

From Newton’s 2nd law F = aTm for a particle moving in circle of radius but aT = αr where

α is angular accelaration Using those all together

τ = αrmr = α(mr2)

The term in the bracket is moment of inertia (I) so

τ = Iα

Class work

1. A force of ~F = (2̂i+ 3ĵ is applied to an object that is pivoted about a fixed axis that

is aligned along the z-axis. If the force is applied at a point located at ~r = (3̂i− 2ĵ)

4.5 Conditions of Equilibrium (First and second)

Condition of Equilibrium in physics refers to state to the state where an object or system is

not accelarating that is, its velocity is constant or zero (static equilibrium:-system is stable

and at rest, the net torque must also be zero ). There are two main conditions of equilibrium.

1 First condition of equilibrium: This states that, the net force acting object must

be zero. This meanse that the vector sum of all force acting on the object must be

equal to zero. Mathematically this can be expressed as

Fnet =
∑

F =
∑

Fx +
∑

Fy +
∑

Fz = 0

2 Second condition of equilibrium: This states that, the net torque acting on the

object must be zero. This meanse that the vector sum of all the torque acting on the

object must be equal to zero. Mathematically this can be expressed as

τnet =
∑

τ =
∑

τclockwise +
∑

τanticlockwise = 0

Practical Example

Two kids balancing a seesaw satisfy both conditions for equilibrium. In the figure 4.8, we see
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the lighter child sitting farther away from the pivot to create a torque equal in magnitude to

that of the heavier child.

Figure 4.8: seesaw satisfy both conditions for equilibrium



Chapter 5

Work, Energy and Power

• Define work, kinetic energy and potential energy

• Calculate the work done by a constant force

• Derive work-kinetic energy theorem and apply in solving related problems

• State the principle of conservation of mechanical energy

• Solve problems related to the topics discussed in this section

5.1 Work done by constant and variable forces

Activity 5.1

What is work done?

Work done is defined as the magnitude of the force exerted in the direction of the displacement

(or distance moved) multiplied by the displacement. Therefore for work to be done on an

object, three essential conditions should be satisfied:

• Force must be exerted on the object

• The force must cause a motion or displacement

• The force should have a component along the line of displacement

Both force and displacement moved are vectors. Work done is the scalar product of force and

displacement:

W = ~F · ~d = Fdcosθ

51
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Figure 5.1: Forces on a free body diagram

where F and d are the magnitudes of the vectors. Work done is a scalar - it does not have

directional properties. We can show the forces on a free body diagram (Figure 5.1). The

force in the direction of the displacement is Fcos450, so work done is W = Fdcosθ which is

the equation for the scalar product of the force and displacement vectors. The work done by

a force on a moving object is zero when the force applied is perpendicular to the displacement

of its point of application. That is, if θ = 900, then W = 0 because cos900 = 0. The sign

of the work also depends on the direction of F relative to d. The work done by the applied

force is positive when the projection of F onto d is in the same direction as the displacement.

When the projection of F onto d is in the direction opposite the displacement, W is negative.

Remember that the unit of energy is the joule.

1joule = 1Newton× 1meter

So 1 joule is the work done when a force of 1 Newton moves through a distance of 1 meter.

This is the definition of the joule.

Example:

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F = 50.0 N at an

angle of 30.00 with the horizontal (Fig. 5.2). Calculate the work done by the force on the

vacuum cleaner as the vacuum cleaner is displaced 3.0m to the right

Figure 5.2: A vacuum cleaner

Solution



5.1. WORK DONE BY CONSTANT AND VARIABLE FORCES 53

A free body diagram as shown in Figure 5.2b. Using the definition of work.

Figure 5.3: Free-body diagram

F = 50.0N , d = 3.0m θ = 30.00 cos30.00 = 0.866

W = Fdcosθ = (50.0N)(3.00m)(cos30.00) = (50.0N)(3.00m)(0.866) = 130J

To finalize this problem, notice in this situation that the normal force n and the gravitational

Fg = mg do no work on the vacuum cleaner because these forces are perpendicular to its

displacement.

Activity 5.2

What are the differences between work done by constant and variable forces?

5.1.1 Work done by a variable force

A force is said to perform work on a system if there is displacement in the system upon ap-

plication of the force in the direction of the force. In the case of a variable force, integration

is necessary to calculate the work done. The work done by a constant force of magnitude F,

as we know, that displaces an object by ∆x can be given as :

W = F ·∆x

In the case of a variable force, work is calculated with the help of integration. For example,

in the case of a spring, the force acting upon any object attached to a horizontal spring can

be given as:

Fs = −kx

Where, k is the spring constant, x is the displacement of the object attached. We can see

that this force is proportional to the displacement of the object from the equilibrium position,

hence the force acting at each instant during the compression and extension of the spring will
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be different. Thus, the infinitesimally small contributions of work done during each instant

are to be counted in order to calculate the total work done.

Therefore,

Ws =

ˆ x

x0

Fs(x) · dx

Ws = −
ˆ x

x0

kxdx) = −k
[

1

2
x2

]x
x0

Ws = −(
1

2
kx2 − 1

2
kx2

0) = −1

2
k∆x2

When a force varies, we cannot use the equation work done = force × distance moved.

But the relationship for the area under the graph is still true. If we are able to record the

force used and the displacement and plot a graph, we could find the work done by finding the

area under the graph, as shown in Figure 5.3 You can estimate the average force by putting

Figure 5.4: Graph of variable force against displacement.

a ruler on top of the graph as though you were going to draw a horizontal line. Adjust

the position of the ruler so that the area between the graph line and the ruler is about the

same above the ruler as it is below the ruler – this will give you an estimate of the average force

Example

A force F = 2x + 5 acts on a particle along the displacement. Find the work done by the

force during the displacement of the particle from x0 = 0m to x = 2m. Given that the force

is in Newton’s.

Solution

Work done

W =

ˆ x

x0

F (x) · dx =

ˆ x

x0

F (x)dxcos(0) =

ˆ x

x0

F (x)dx

W =

ˆ 2

0
(2x+ 5)dx =

[
2x2

2
+ 5x

]2

0

= (2× 2 + 5× 2)Nm = 14J
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5.2 Conservation of energy

In physics the term work (or often work done) is another way of saying energy is being

transferred from one object to another or transformed from one type to another.

Work done = energy transferred

The more energy transferred the more work has been done. We define the sum of kinetic and

potential energies as mechanical energy:

E = U +KE

Where E is the total mechanical energy, KE is the kinetic energy and U is the all types of

potential energy. So we can write the general form of the definition for mechanical energy

without a subscript on U In a system the mechanical energy of the system stays constant

unless there is a force such as friction acting on the system.

The potential energy can be gravitational potential energy or energy stored in a spring,

for example. When a spring is stretched, work is done because a force has been used to move

one end of the spring by a certain displacement. Work is also done against gravity when you

walk up stairs and you gain gravitational potential energy. When you walk down stairs, work

is done by gravity and you lose gravitational potential energy.

We can show this as:

Work done against gravity, W = ∆U = Uf − Ui

Work done by gravity, W = –∆U = −(Uf − Ui)

Where Uf Final potential energy and Ui initial potential energy

One of the possible outcomes of doing work on a system is that the system changes its

speed. In this section, we investigate this situation and introduce our first type of energy

that a system can possess, called kinetic energy.

W = ∆K = Kf −Ki

The Conservation of mechanical energy is

E = ∆U + ∆KE

E = (Uf − Ui) + (Kf −Ki) = 0

(Kf + Uf = Ki + Ui (Conservation of mechanical energy)
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Example

A bullet weighing 20g is moving at a velocity of 500m/s. This bullet strikes a windowpane

and passes through it. Now, its velocity is 400m/s. Calculate work done by a bullet when

passing through this obstacle.

Solution

m = 20g = 0.02kg, v1 = 500m/s, v2 = 400m/s

We need to determine the change in kinetic energy in this equation. You know that kinetic

energy change

W =
1

2
mv2

2 −
1

2
mv2

1

W =
1

2
m(v2

2 − v2
1)

W =
1

2
× 0.2kg(4002 − 5002)m2/s2 = 0.01(160000− 250000)kgm2/s2

W = −900J

This shows that the bullet lost enegy of 900J ie work done by the bullet.

Activity 5.4

1. (a) A boy walks up a hill. His displacement from his starting point is (800, 150) m.How

much gravitational potential energy has he gained?

(b) The boy then walks to a village. The displacement from his starting point is (400,

–50) m. How much gravitational potential energy did he lose going from the top of the

hill to the village?

(c) What was the boy’s net change in gravitational potential energy from his starting

point to the village?

2. A spring has a spring constant of 75 N/m. It is stretched by 20 cm. How much energy

is stored in the spring?

3. A force of 40 N is used to stretch a spring which has a spring constant of 350 N/m.

How much energy is stored in the spring?

4. A spring has a spring constant of 150 N/m and a mass is 100 g is attached to it. The

spring sits on a horizontal frictionless surface and the other end of the spring is attached

to a solid block. The mass is pulled by 10 cm to stretch the spring and then let go.

What is the highest velocity of the mass?
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5.3 Work energy theorem

According to Newton‘s second law of motion, the sum of all the forces acting on a particle,

F = ma

Let a force F is applied on an object initially moving with velocity u. If it is displaced to

a displacement s and changes its velocity into v, then its motion will be expressed by the

equation of motion. We can use the equation of motion

v2 − v2
0 = 2as

Multiplying this equation by mass m and dividing throughout by 2, we get:

1

2
mv2 − 1

2
mv2

0 = mas = Fs = W

∴W = ∆kE

Example

A car with a mass of 1,000 kg brakes to a stop from a velocity of 20 m/s (45 mi/hr) over a

length of 50 meters. What is the force applied to the car? Solution

∆KE = 0− [(1/2)(1, 000 kg)(20 m/s)2] = −200, 000 J

W = −200, 000 Nm = (F )(50 m)⇒ F = −4, 000 N

Activity 5.5

1. A football of mass 550 g is at rest on the ground. The football is kicked with a force

of 108 N. The footballer’s boot is in contact with the ball for 0.3 m.

a) What is the kinetic energy of the ball?

b) What is the ball’s velocity at the moment it loses contact with the footballer’s boot?

2. A car of mass 1200 kg accelerates from 5 m/s to 15 m/s. The force of the engine acting

on the car is 6000 N. Over what distance did the force act?
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5.4 Conservative forces

Conservative forces a force that does not work when a body moves on a closed path. Con-

servative forces have these two equivalent properties:

1 The work done by a conservative force on a particle moving between any two points is

independent of the path taken by the particle.

2 The work done by a conservative force on a particle moving through any closed path is

zero. (A closed path is one in which the beginning and end points are identical.) The

gravitational force is one example of a conservative force, and the force that a spring

exerts on any object attached to the spring is another.

Activity 5.5

1. What are the differences between conservative and dissipative forces?

5.5 Power

Power is the rate at which work is done, or the work done per second. It is measured in the

units joules per second (j/s), which are also called watts (W).

Power =
total..work..done

total..time..taken

Example:

A garage hoist lifts a truck up 2 meters above the ground in 15 seconds. Find the

power delivered to the truck. [Given: 1000 kg as the mass of the truck] Solution

First we need to calculate the work done, which requires the force necessary to lift the

truck against gravity:

F = mg = 1000 x 9.81 = 9810 N.

W = Fd = 9810N x 2m = 19620 Nm = 19620 J.

The power is P = W/t = 19620J / 15s = 1308 J/s = 1308 W.

Activity 5.6

1. A weightlifter lifts 200 kg through 1.8 m in 2 s.

a) What is the weightlifter’s power?

b) Why is his actual power likely to be higher than this?
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2. A petrol engine raises 200 liters of water in a well from a depth of 7 m in 6 seconds.

Show that the power of the engine is about 2330 W.

3. Look at question 1 on page 101. It takes 4 seconds to drag the container up the slope.

What is the power?

4. Look at question 2 on page 101. The man takes 12 seconds to drag the box. What is

his power?

5. A spring with a spring constant of 275 N/m is stretched 20 cm in 2 seconds.What is

the power applied to stretch the spring?

Review questions

1. A football of mass 550 g is at rest on the ground. The football is kicked with a force

of 108 N. The footballer’s boot is in contact with the ball for 0.3 m.

a. What is the kinetic energy of the ball?

b. What is the ball’s velocity at the moment it loses contact with the footballer’s boot?

2. A car of mass 1200 kg accelerates from 5 m/s to 15 m/s. The force of the engine acting

on the car is 6000 N. Over what distance did the force act?

3. a) A boy walks up a hill. His displacement from his starting point is (800, 150) m.How

much gravitational potential energy has he gained?

b) The boy then walks to a village. The displacement from his starting point is (400,

-50) m. How much gravitational potential energy did he lose going from the top of the

hill to the village?

c) What was the boy’s net change in gravitational potential energy from his starting

point to the village?

4. A spring has a spring constant of 75 N/m. It is stretched by 20 cm. How much energy

is stored in the spring?

5. A force of 40 N is used to stretch a spring which has a spring constant of 350 N/m.

How much energy is stored in the spring?

6. A spring has a spring constant of 150 N/m and a mass is 100 g is attached to it. The

spring sits on a horizontal frictionless surface and the other end of the spring is attached

to a solid block. The mass is pulled by 10 cm to stretch the spring and then let go.

What is the highest velocity of the mass?
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7. A ball of mass 500 g is kicked into the air at an angle of 450. It reaches a height of 12

m. What was its initial velocity?

8. A pendulum bob has a mass of 1 kg. The length of the pendulum is 2 m. The bob is

pulled to one side to an angle of 100 from the vertical.

a) What is the velocity of the pendulum bob as it swings through its lowest point?

b) What is the angular velocity of the pendulum bob?

9. A weightlifter lifts 200 kg through 1.8 m in 2 s. a) What is the weightlifter’s power?

b) Why is his actual power likely to be higher than this?

10. A petrol engine raises 200 liters of water in a well from a depth of 7 m in 6 seconds.

Show that the power of the engine is about 2330 W.

11. . Look at question 1 on page 101. It takes 4 seconds to drag the container up the slope.

What is the power?

12. Look at question 2 on page 101. The man takes 12 seconds to drag the box. What is

his power?

13. . A spring with a spring constant of 275 N/m is stretched 20 cm in 2 seconds. What

is the power applied to stretch the spring?

14. . How can you derive the work–energy theorem form Newton’s second law of motion?



Chapter 6

Oscillation and Waves

Objective: - At the end of this unit students should be able to:

• Describe the periodic motion of a vibrating object in qualitative terms, and analyse

it in quantitative terms (e.g. the motion of a pendulum, a vibrating spring, a tuning

fork).

• Define simple harmonic motion (SHM) and describe the relationship between SHM and

circular motion.

• Derive and use expressions for the frequency, periodic time, displacement, velocity and

acceleration of objects performing SHM.

• Describe the effects: free oscillations, damping, forced oscillations and resonance.

• Explain the energy changes that occur when a body performs SHM.

• Relate the energy of an oscillator to its amplitude.

• Solve problems on SHM involving period of vibration and energy transfer.

• Describe the characteristics of a mechanical wave and identify that the speed of the

wave depends on the nature of the medium.

• Calculate the frequency of the harmonics along a string, an open pipe and a pipe closed

at one end.

6.1 Oscillatory motion

Simple harmonic motion the periodic oscillation of an object about an equilibrium position,

such that its acceleration is always directly proportional in size but opposite in direction

61
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to its displacement oscillating (vibrating) about a central position equilibrium position the

position of an oscillating object when at rest restoring force the force on a displaced object

that acts towards its original position.

When a body repeats its path of motion back and forth about the equilibrium or mean

position, the motion is said to be periodic. All periodic motions need not be back and forth

like the motion of the earth about the sun, which is periodic but not vibratory in nature. The

periodic motion in which there is existence of a restoring force and the body moves along the

same path to and fro about a definite point, equilibrium position, is called oscillatory motion

6.1.1 Harmonic Motion

Any motion that repeats at regular intervals is called periodic motion or harmonic motion.

However, here we are interested in a particular type of periodic motion called simple harmonic

motion (SHM).

Periodic oscillations

If something is oscillating (vibrating) this means that it is moving backwards and forwards,

up and down, side to side, in and out, etc, around some central position. This central position

is called the equilibrium position and it is the position of the object when it is at rest.

Whenever an object is displaced from its equilibrium position there is a force that acts

towards its original position. This force is often referred to as a restoring force, as it tries to

restore the system to its equilibrium position. This is much easier to understand if we look

at some simple examples.

How does a pendulum work?

A simple pendulum is made by hanging a mass, known as the bob, on a string from a fixed

support, as shown in Figure 6.1. If we let the mass hang without swinging, it will hang

directly below the support with all forces on it balanced. This position, where the resultant

force acting on the bob is zero, is known as the equilibrium position.

If we give the bob a small initial displacement by pulling it to one side and then release it,

there will be a resultant force, due to the weight of the bob and the tension acting in the string.

This force pulls it back towards the equilibrium position. This causes accelerationtowards

the equilibrium position (opposite to the direction of displacement).
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Figure 6.1: Oscillation of a pendulum when the bob is pulled to one side and released

When the bob reaches the equilibrium position, the resultant force is now zero, but the

bob is moving and can’t stop instantly. Its inertia keeps it moving through the equilibrium

position, and if there is no significant friction of air resistance, it will keep moving, slowing

down all the time until it is as high as it was when it started.

It now has a displacement equal and opposite to its starting displacement. However, as

displacement is a vector quantity it is now a negative value. If the initial displacement was

3 cm, the displacement after one swing (half an oscillation) will be –3 cm.

In exactly the same way, it will swing back to where it started to complete one complete

cycle of the oscillation. It will now repeat this process again and again. It is important to

notice the force causing the oscillation always acts towards the equilibrium position.

How does a mass on a spring oscillate?

If a mass is hung from a support by a spring and allowed to settle until it is stationary, it

will hang with the spring stretched so that the restoring force (in this case the tension in the

spring) is equal and opposite to the weight of the mass. This is the equilibrium position.

If we now pull the mass down, the tension in the spring will be greater than the weight

of the mass. The resultant force on the mass is upwards and so, if we let go, it accelerates
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Figure 6.2: Oscillation of a mass–spring system when the mass is displaced downwards and
released

upwards. When the mass gets back to the equilibrium position it is moving and, although

there is no resultant force here, its inertia keeps it moving.

The mass keeps moving, slowing down all the time, until it is as far above the equilibrium

point as it started below. The tension in the spring is now less than the weight of the mass,

the resultant force is now downwards and the mass accelerates downwards. The mass passes

through the equilibrium position again, and carries on until it arrives back at where it started.

It has completed one cycle, and will now do the same again, and again.

What does SHM look like?

If we plot how the displacement of an object performing simple harmonic motion varies

with time, we find that the variation is sinusoidal, as shown in Figure 6.3. Note that the

displacement goes positive and negative as the mass oscillates either side of the equilibrium

position.

The size of the maximum displacement in either direction is called the amplitude A. The

time to perform one complete cycle of the oscillation is called the time period T. When we

say the oscillation is sinusoidal, we mean that the displacement is described mathematically
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Figure 6.3: Variation of displacement with time for simple harmonic motion

using sine or cosine functions:

x = Asin

(
2π

t

T

)
orx = Acos

(
2π

t

T

)
(6.1)

where A is the amplitude of the oscillation and T the time period. Either could be used, but

throughout the rest of this chapter we will use,

x = Asin

(
2π

t

T

)
(6.2)

although the cosine function gives a better description if the SHM is started by displacing

the oscillator and then releasing it.
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T · t) in the expresion relation.
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Looking carefully at the information above you can see how in one oscillation the displacement

starts at 0 rises to a positive amplitude, falls back to zero, falls to a negative amplitude and

then rises back to zero.

6.1.2 Damped and Forced Oscillation

Damped Oscillation

The oscillatory motions we have considered so far have been for ideal systems—that is,systems

that oscillate indefinitely under the action of only one force a linear restoring force. In many

real systems, non conservative forces, such as friction, retard the motion.

Consequently, the mechanical energy of the system diminishes in time, and the motion is

said to be damped. Figure 6.4 depicts one such system: an object attached to a spring and

submersed in a viscous liquid. One common type of retarding force is proportional to the

Figure 6.4: One example of a damped oscillator is an object attached to a spring and sub-
mersed in a viscous liquid

speed of the moving object and acts in the direction opposite the motion. This retarding

force is often observed when an object moves through air, for instance.

Air resistance and friction are typical examples of damping forces and are the reason why

pendulums naturally stop swinging and masses on springs stop oscillating. The damping

force is given by:

FD = −bv (6.3)

b = the damping coefficient and is dependent on the medium providing the damping, v =

the velocity of the object through the medium.
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This equations shows how the resistive force is directly proportional, but opposite, to the

velocity. As a result the amplitude of the oscillation will decay exponentially, as shown

overleaf in Figure 6.5 (a). Note that the period of the oscillation does not change as the

amplitude gets smaller. Heavier damping causes a more rapid decay of amplitude as shown

in Figure 6.5(b). Damping in a car suspension is not normally so heavy, as this would produce

Figure 6.5: Plots of displacement against time for an oscillator that is displaced and then
released, for different amounts of damping.

a very ‘hard’ and uncomfortable ride for the passengers. The damping shown in Figure 6.5(b),

on the other hand, would provide a very bouncy ride; this would be called underdamping.

The damping in a car suspension is always a compromise somewhere near to the critical

damping shown in Figure 6.5(c). Critical damping is the amount of damping that leads to

the oscillator settling back to a stationary state at the equilibrium position in the shortest

possible time.
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Damping reduces the effects of resonance. As the periodic driving force transfers energy

into the oscillator the damping mechanism dissipates the energy. The resonance peak in the

graph of driven amplitude against driving frequency becomes lower and relatively wider, as

shown in Figure 6.6. It can also be seen that damping also causes a very small reduction in

the natural frequency of the oscillator.

Figure 6.6: Driven amplitude against driving frequency for forced oscillations of an oscillator
with different amounts of damping

Forced Oscillation

A common example of a forced oscillator is a damped oscillator driven by an external force

that varies periodically, such as F (t) = F0sinωt, where ω is the angular frequency of the

driving force and F0 is a constant. In general, the frequency of the driving force is variable

while the natural frequency ω of the oscillator is fixed by the values of k and m. Newton’s

second law in this situation gives

∑
F = ma↔ F0sinωt− b

dx

dt
− kx = m

d2x

dt2
(6.4)
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After a sufficiently long period of time, when the energy input per cycle from the driving

force equals the amount of mechanical energy transformed to internal energy for each cycle, a

steady-state condition is reached in which the oscillations proceed with constant amplitude.

Asin(ωt+ φ)

Where

A =
F0/m√

(ω2 − ω2
0)2 +

(
bω
m

)2
and where ω0 =

√
k
m is the natural frequency of the undamped oscillator (b = 0).

For small damping, the amplitude is large when the frequency of the driving force is near

the natural frequency of oscillation, or when 0. The dramatic increase in amplitude near the

natural frequency is called resonance, and the natural frequency 0 is also called the resonance

frequency of the system.

6.2 Properties of wave (frequency, wave length, pe-

riod)

Terminologies in Wave

Crests/Troughs: are positions in a wave with maximum displacements above/below

the equilibrium position.

Amplitude (A): is the maximum displacement from the equilibrium position.

Displacement (y): is position of a wave from equilibrium position at any time.

Wave length (λ): distance between any two consecutive points which are in phase.

Period (T): is the time taken by a wave to move one wave length.

Frequency (f): number of oscillations performed per unit time.

Speed (v): is constant in a medium provided the medium is homogeneous.

What is a travelling wave?

Electromagnetic and sound waves are particularly important to us, but waves on water are a

little easier to observe. A travelling wave transfers energy, and sometimes information, from
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one place to another, in what is called the direction of propagation. An oscillation at the

source of energy causes an oscillation to travel through space. For electromagnetic waves this

oscillation is of electric and magnetic fields and does not need a medium. In a mechanical

wave that involves the oscillations of particles of a physical medium, as the particles pass

on energy, they undergo temporary displacements but no permanent change in the position.

For example, when ripples travel across a pond the water molecules oscillate vertically but

do not move in the direction of the wave.

Frequency and time period

The frequency, f, of an oscillation is the number of cycles it completes per second. The unit

is the hertz, symbol Hz. A frequency of 50 Hz would correspond to 50 complete oscillations

per second. Frequency is related to time period by:

f =
1

T

and so our mathematical expression for displacement can be written as

x = Asin(2πft)

Activities

1. An object moving with simple harmonic motion has an amplitude of 3 cm and a

frequency of 30 Hz. Calculate:

2. the time period of the oscillation,

3. the acceleration in the centre and at the maximum displacement of an oscillation, and

4. the velocity in the centre and at the maximum displacement of an oscillation

5. Describe the key features of the different forms of damping the general effect of damping

on resonance.

6.3 Types of Waves

6.3.1 Transverse and longitudinal

Waves can also be categorized as transverse and longitudinal waves based on the way they

are propagating.
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1. Transverse Wave- is a wave where particles of the disturbed medium oscillate per-

pendicular to the direction of wave motion. Examples are: water waves, waves on

strings, and all EM waves. Sinusoidal graphs can represent this motion.

2. Longitudinal Wave- is a wave where particles of the disturbed medium oscillate

parallel to the direction of wave motion. Example: sound wave

6.3.2 Mechanical and Electromagnetic wave

Waves can be categorized as Mechanical and Electromagnetic waves based on the need of

material medium for its propagation.

1. Mechanical Waves- are waves produced by the oscillation of particles of a mechanical

medium and need a medium for propagation. Examples are water waves, sound wave,

waves in strings etc.

All mechanical waves require:

• some source of disturbance

• a medium that can be disturbed and

• physical medium through which elements of the medium can influence each other.

2. Electromagnetic (EM) waves:-are produced by accelerated charged particles and

can propagate through both material medium and vacuum. Examples are: Light, radio

and television waves, micro waves, x-rays, etc. All EM waves in vacuum propagate with

speed c = 3.0× 108m/s.

Waves can either move in space (e.g water waves), the so called traveling waves, or be sta-

tionary in an enclosure, the so called standing waves.

6.4 Wave behavior (reflection, refraction, interfer-

ence, diffraction)

The characteristics of waves are important in determining the size of waves, the speed at

which they travel, how they break on shore, and much more. Following are some of the

characteristics of waves.
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Reflection of Waves

Whenever a traveling wave reaches a boundary, part or all of the wave bounces back. This

phenomenon (rebounding of wave from a surface) is called reflection. For example, consider

a pulse traveling on a string that is fixed at one end. When the pulse reaches the wall, it is

reflected.

Refraction of wave

It is the change in direction of a wave passing from one medium to another caused by its

change in speed. For example, waves in deep water travel faster than in shallow. If an ocean

wave approaches a beach obliquely, the part of the wave farther from the beach will move

faster than that closer in, and so the wave will swing around until it moves in a direction

perpendicular to the shoreline. The speed of sound waves is greater in warm air than in cold.

At night, air is cooled at the surface of a lake, and any sound that travels upward is refracted

down by the higher layers of air that still remain warm. Thus, sounds, such as voices and

music, can be heard much farther across water at night than in the daytime.

Diffraction of wave

It is the spreading of waves around obstacles. Diffraction takes place with sound; with elec-

tromagnetic radiation, such as light, X-rays, and gamma rays; and with very small moving

particles such as atoms, neutrons, and electrons, which show wavelike properties. One conse-

quence of diffraction is that sharp shadows are not produced. The phenomenon is the result

of interference (i.e., when waves are superimposed, they may reinforce or cancel each other

out) and is most pronounced when the wavelength of the radiation is comparable to the linear

dimensions of the obstacle.

Interference of wave

It is the net effect of the combination of two or more wave trains moving on intersecting or

coincident paths. The effect is that of the addition of the amplitudes of the individual waves

at each point affected by more than one wave.

Interference also occurs between two wave trains moving in the same direction but having

different wavelengths or frequencies. The resultant effect is a complex wave. A pulsating

frequency, called a beat, results when the wavelengths are slightly different.
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6.5 Wave equation

The frequency of a wave can be defined in two equivalent ways. It is the frequency of the

individual oscillators that pass the energy along, the number of times particles go up and

down or backwards and forwards per second. It is also the number of complete waves, the

number of wavelengths that pass any given point per second. If the wavelength is λ, and f

wavelength pass a point per second, then the speed of the wave must be given by the wave

equation:

v = λf (6.5)

The speed of any travelling wave depends on the media it is travelling. For a mechanical

wave travelling along a string the speed of the wave depends on the tension of the string and

the mass per unit length(sometimes called linear density).

v =

√
T

µ

where µ= mass per unit length given by µ = m/l in kg/m T = tension in the string in N.

The formula given above shows us that the ‘tighter’ the string the faster the waves will

travel down its length. Additionally the ‘lighter’ the string, (the smaller its mass/length

ratio), the faster the waves will travel down its length. The phase speed of a wave is the

rate at which the phase of the wave travels through space. Any given phase of the wave

(for example, the crest or the trough) will appear to travel at the phase velocity. The phase

velocity is given in terms of the wavelength λ (lambda) and period T as

vphase =
λ

T
(6.6)

Review questions

1. A simple pendulum is made from a bob of mass 0.040 kg suspended on a light string

of length 1.4 m. Keeping the string taut, the pendulum is pulled to one side until it

has gained a height of 0.10 m. Calculate

a) the total energy of the oscillation

b) the amplitude of the resulting oscillations

c) the period of the resulting oscillations

d) the maximum velocity of the bob
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e) the maximum kinetic energy of the bob.

2. A piston in a car engine has a mass of 0.75 kg and moves with motion which is approxi-

mately simple harmonic. If the amplitude of this oscillation is 10 cm and the maximum

safe operating speed of the engine is 6000 revolutions per minute, calculate:

a) maximum acceleration of the piston

b) maximum speed of the piston

c) the maximum force acting on the piston constant?

3. A car of mass 820 kg has an under damped suspension system. When it is driven by a

driver of mass 80 kg over a long series of speed bumps 10 m apart at a speed of 3 m/s

the car bounces up and down with surprisingly large amplitude.

a) Explain why this effect occurs.

b) Calculate the net spring constant of the car suspension system.

4. If you are given a metal rod and a hammer, how must you hit the rod to produce:

a) a transverse wave, and

b) a longitudinal wave?

5. A whistle producing a sound at 1 KHz is whirled in a horizontal circle at a speed of 18

m/s. What are the highest and lowest frequencies heard by a listener standing a few

metres away, if the speed of sound in air is 340 m/s? 6. If the speed of sound in air is

340 m/s, what is the wavelength of a sound wave at 512 Hz?

6. A travelling wave on a string, of amplitude 2 mm, frequency 500 Hz and speed 300

m/s, can be described by the function

7. Y = Asin(2π − 2πft

a) Sketch graphs of displacement Y against distance x for this wave, for the first 1.2

m:

i) for time t= 0, and

ii) for time t= 0.5 ms

b) Sketch graphs of displacement Y against time t for the oscillation produced by

this wave for the first 4 ms
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i) at the source where x= 0, and

ii) at a distance x= 30 cm from the source.
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Chapter 7

Heat and thermodynamics

Objective: - By the end of this unit students should be able to:

• Define the zeroth law of thermodynamics.

• Determine the relationship between temperature and energy transfer and thermal equi-

librium.

• Give the definitions of isothermal, isobaric, isochoric and adiabatic processes.

• State the first law of thermodynamics.

• Describe ways of changing the internal energy of a gas.

• Solve problems involving calculations of pressure, temperature or volume for a gas

undergoing adiabatic changes.

• State the assumptions made to define an ideal gas.

• Describe the kinetic theory of gases, including the importance of Brownian motion and

diffusion.

7.1 Temperature and Heat

Thermodynamics is a science of the relationship between heat, work, temperature, and energy.

Temperature is more difficult to define and we will encounter a number of different ways to

approach of temperature.

77
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Temperature is something that we all have experience of. If we place two bodies of different

temperatures in contact, then the particles at the boundary will collide and the kinetic energy

of particles is transferred backwards and forwards between the objects. A ‘body’ is another

word for an object. On average, the particles in the hotter body have more kinetic energy

than those in the colder body, so there is a net transfer of thermal energy from the hotter

body to the colder body.

This process is referred to as heating. This is the only way that the word heat can be used.

A body does not contain or possess heat. This is just the same as an electrical component,

which does not contain or possess electrical current. Instead we will use the term internal

energy to describe the total energy that is internal to bodies.

Temperature is a measure of the average random kinetic energy of particles in a body, and

is used to determine in which direction there will be a net energy flow when two bodies are

close to one another.

Temperature Scales

Thermometers measure temperature according to well-defined scales of measurement. The

three most common temperature scales are Fahrenheit, Celsius, and Kelvin. Temperature

scales are created by identifying two reproducible temperatures. The freezing and boiling

temperatures of water at standard atmospheric pressure are commonly used. On the Celsius

Absolute Temperature Celsius Temperature
Absolute zero 0.00 -273.15
Triple point of water 273.16 0.01
Ice point 273.15 0.00
Stean point 373.15 100.00
Room Temperature 293 20

scale, the freezing point of water is 00C and the boiling point is 1000C. The unit of temper-

ature on this scale is the degree Celsius (0C). The Fahrenheit scale has the freezing point of

water at 320F and the boiling point at 2120F . Its unit is the degree Fahrenheit (0F ).

Example

”Room temperature” is generally defined in physics to be 250C. (a) What is room tempera-

ture in 0F? (b) What is it in K?
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To convert from Use this Equetion
Celsius to Fahrenheit TF = 9

5
Tc + 32

Fahrenheit to Celsius Tc = 5
9
(TF − 32)

Celsius to kelvin Tk = Tc + 273.15
kelvin to Celsius Tc = Tk − 273.15
Kelvin to Fahrenheit TF = 9

5
(Tk − 273.15) + 32

Solution

To convert from 0C to 0F , use the equation

TF = 9/5TC + 32

Substitute the known value into the equation and solve:

TF = 9/5(250C) + 32 = 770F

. Similarly, we find that

TK = TC + 273.15 = 298K = 298K

.

Activity

1 Convert the following to degrees Celsius:

a) the boiling point of helium, 4.25 K

b) the freezing point of gold, 1340 K.

2 Convert the following to kelvin:

a) the freezing point of mercury, -39 0C

b) the average temperature of the universe, -270.42 0C.
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7.2 The effect of heat on materials (change of Tem-

perature, expansion, change of phase, heat ca-

pacity

Thermal Expansion

The expansion of alcohol in a thermometer is one of many commonly encountered examples of

thermal expansion, which is the change in size or volume of a given system as its temperature

changes. The most visible example is the expansion of hot air. When air is heated, it expands

and becomes less dense than the surrounding air, which then exerts an (upward) force on the

hot air and makes steam and smoke rise, hot air balloons float, and so forth.

Linear Thermal Expansion

The increase in length ∆L of a solid is proportional to its initial length L0 and the change in

its temperature ∆T .The proportionality constant is called the coefficient of linear expansion,

α.

∆L = αL0∆T (7.1)

L = L0 + ∆L = L0(1 + α∆T ) (7.2)

α =
∆L

L0∆T

And has unit of k−1 or 0c−1

Table 7.1: Some typical coefficients of thermal expansion.
Substance Coefficient of Linear

expansion, α(K−1)
Lead 29× 10−6

Aluminium 24× 10−6

Brass 19× 10−6

Copper 17× 10−6

Iron (steel) 12× 10−6

Concret 12× 10−6

Window glass 11× 10−6

Pyrex glass 3.3× 10−6

Quartiz 0.50× 10−6
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Areal Expansion

The change in area ∆A of a solid is proportional to its initial area A0 and thechange in its

temperature ∆T That is,

∆A = βA0∆T (7.3)

A = A0 + ∆A = A0(1 + β∆T ) (7.4)

Where β = 2α is coefficient of arial expansion

Volume Expansion

The change in volume ∆V of a solid is proportional to its initial volume V0 and the change

in its temperature ∆T . That is:

∆V = βV0∆T (7.5)

V = V0 + ∆V = V0(1 + β∆T ) (7.6)

Where γ = 3α is coefficient of volume expansion

Table 7.2: Some typical coefficients of thermal expansion.
Substance Coefficient of Volume

expansion, γ(K−1)
Ether 1.51× 10−3

Carbon Tetrachloride 1.18× 10−3

Alcohol 1.01× 10−3

Gasolin 17× 10−3

Olive Oil 0.95× 10−3

Water 0.21× 10−3

Mercury 0.18× 10−3

Example

1. A steel rod has a length of exactly 20 cm at 300C. How much longer is it at 500C?

[Use αSteel = 11× 10−6/C.]

Solution The change in temperature of the steel rod is

∆T = 500C − 200C = 300C

and the length is 20.0 cm. Using the given value for the linear expansion coefficient α,



82 CHAPTER 7. HEAT AND THERMODYNAMICS

we find the change in length from Equation of expansion,

∆L = L0α∆T = (20.0cm)(11× 10−6/0C)(20.00) = 4.4× 10−3cm

The length of the bar increases by 4.4× 10−3cm.

2. By how much does the volume of an aluminum cube 5.00 cm on an edge increase when

the cube is heated from 10.00Cto60.00C? [Use αAl = 23× 10−6/C]

Solution

From the given value of α (the linear expansion coefficient) and Equation of areal

expansion, we can get β, the volume expansion coefficient:

β = 3α = 3(23× 10−6/C) = 69× 10−6/C

Now, the volume of the cube is V = (5.00cm)3 = 125cm3; this is really the initial

volume, and as usual we don’t expect it to change much. The change in temperature

of the cube is ∆T = 50.00C. the corresponding increase in volume:

∆V = V βδT = (125cm3)(69× 10−6/C)(50.00C) = 4.3× 10−1cm3 = 0.43cm3

The volume of the cube increases by 0.43cm3

7.2.1 Specific Heat and Latent Heat

Specific Heats:

Heat flowing into or out of a body (or system) changes the temperature of the body (or

system) except during phase changes the temperature remains constant. The quantity of

heat, Q, required to change the temperature of a body of mass m by is proportional to both

the mass and the change in temperature. Mathematically,

Q ∼ m∆T ⇒ Q = mc∆T

c is a proportionality constant called specific heat capacity(or in short specific heat) of the

substance defined as the amount of heat required to raise the temperature of a unit mass of

any substance through a unit degree. Its SI unit is J/kg.KorJ/kg.0C . The amount of heat
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required to change the temperature of n moles of a substance, usually for gases, by ∆T is :

Q = nC∆T

where C is heat capacity.

The heat capacity(C) is defined as the amount of heat energy required to raise the tem-

perature of a substance by 10C.

Example

A 0.500 kg aluminum pan on a stove is used to heat 0.250 liters of water from 20.00C to

80.00C.

(a) How much heat is required? What percentage of the heat is used to raise the temperature

of

(b) the pan and (c) the water?

Solution

Because water is in thermal contact with the aluminum, the pan and the water are at the

same temperature. Calculate the temperature difference:

∆T = Tf − Ti = 60.00C

. Calculate the mass of water. Because the density of water is 1000 kg/m3, one liter of water

has a mass of 1 kg, and the mass of 0.250 liters of water is mw = 0.250kg. Calculate the

heat transferred to the water. Use the specific heat of water 4186J/kg0C:

Qw = mwcw∆T = (0.250kg)(4186J/kg0C)(60.00C) = 62.8kJ

. Calculate the heat transferred to the aluminum. Use the specific heat for aluminum in

Table 1:

QAl = mAlcAl∆T = (0.500kg)(900J/kg0C)(60.00C) = 27.0× 104 J = 27.0kJ.

Compare the percentage of heat going into the pan versus that going into the water. First,

find the total transferred heat:

QTotal = Qw + QAl = 62.8kJ + 27.0kJ = 89.8kJ
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. Thus, the amount of heat going into heating the pan is

27.0 kJ/89.8 kJ × 100% = 30.1%27.0 kJ89.8 kJ × 100% = 30.1%

and the amount going into heating the water is

62.8 kJ/89.8 kJ × 100% = 69.9%62.8 kJ89.8 kJ × 100% = 69.9%.

Latent Heats

Latent Heat the heat required per unit mass of a substance to produce a phase change at

constant temperature. The latent heat, QL required to change the phase of m mass of a body

at constant temperature is calculated as,

QL = ±mL

Where L is the specific latent heat required to change the phase of 1 kg of a substance at

constant temperature.

Types of Latent Heat Transfer

There are two types of latent heat transfers between an object and its environment.

Latent Heat of Fusion (Lf): is the heat absorbed or released when matter melts, changing

phase from solid to liquid form at constant temperature. For example, 333.7 kJ of heat is

required to change 1 kg of ice to water at 00C, so for water Lf = 333.7kJ/kg.

Latent Heat of Vaporization (LV ): is the heat absorbed or released when matter vapor-

izes, changing phase from liquid to gas phase at constant temperature. To change 1 kg of

water to steam at 1000C, 2256 kJ of heat is required and so LV = 2256kJ/kg.

Example

1. If the amount of heat needed for a phase change is 300 kcal, calculate the latent heat

of a 5 kg material.

Solution:

Given parameters are, Q = 300 k.cal M = 5 kg The formula for latent heat is given by,

L = Q/ML = 300/5L = 60k.cal/kg

Hence latent heat value is 60 k.cal/kg

2. At 20C , a piece of metal has a density of 60g. When immersed in a steam current at
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1000C, 0.5g of the steam condenses on it. Provided that the latent heat of steam is

540 cal/g, calculate the specific heat of the metal.

Solution:

Let c be the specific heat of the metal.

Heat gained by the metal

Q = mc∆t⇒ Q = 60× c× (100− 20)⇒ Q = 60× c× 80cal

The heat released by the steam

Q = m× LQ = 0.5× 540cal

By the principle of mixtures, Heat given is equal to Heat taken

0.5× 540 = 60× c× 80c = 0.056cal/g0C

Hence specific heat value is

0.056cal/g0C

Hence, we can conclude that the specific latent heat (L) of a material:

7.3 Laws of thermodynamics (zeros, first and sec-

ond Laws)

7.3.1 Zeros Laws of thermodynamics

The zeroth law of thermodynamics states that: “Two bodies that are separately in

thermal equilibrium with a third body must be in thermal equilibrium with each other.”

When two bodies are in thermal equilibrium then there is no net transfer of energy between

them.F rom our everyday experience, the zeroth law may seem obvious, but it provides us

with a way of defining temperature: it is the property of a body that determines whether it

is in thermal equilibrium with other bodies. This also enables accurate calibration between

thermometers of different kinds.
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Figure 7.1: If A is in thermal equilibrium with B, and C is in thermal equilibrium with B,
then A is also in thermal equilibrium with C.

7.3.2 First Laws of thermodynamics

The work of Joule mentioned at the start of this section led to the idea that energy as

a quantity is conserved whenever any process takes place. This notion is expressed most

often as the ‘law of conservation of energy’, which is a simplification of the first law of

thermodynamics. The first law states that: “The increase in internal energy of a system is

equal to the sum of the energy entering the system through heating, and the work done on

the system.” When defining the three quantities, particular attention must be paid to the

sign of each quantity. These have the following definitions:

∆U= increase in internal energy of the system

∆Q = the amount of energy transferred to the system by heating it (that is, by means of a

temperature gradient)

∆W = the amount of work done on the system

The first law of thermodynamics is therefore written as:

∆U = ∆Q+ ∆W (7.7)

Isochoric process

In a constant volume process, the volume of the system stays constant. Consequently, W = 0.

From the first law we see that, All the heat entering the system goes into increasing the

internal energy.
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Adiabatic Process

In an adiabatic process, the system does not exchange heat with its surroundings; that is, Q

= 0. The first law for an adiabatic process takes the form

∆U = W

Isothermal Process

It is a process which involves no change in the temperature of the system. If the process

occurs at constant temperature then there is no change in the internal energy of the system

so . The first law for an isothermal process takes the form

∆U = Q+W

0 = Q+W

Q = −W

Isobaric process

In an isobaric process the expansion or compression occurs at constant pressure. Any work

done by the system will result in an increase in volume. The work done in Pressure- Volume

graph is equal to the area under the PV graph. For an isobaric process the work done W is

calculated as

W = P∆V = P (Vf − Vi)

The first law for an isobaric process can be written as

∆U = Q+W..or..Q− P∆V = Q− P (Vf − Vi)

Entropy and the second law of thermodynamics

The second law of thermodynamics states that: ”No process is possible in which there is an

overall decrease in the entropy of the universe.”

Review of unit questions
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Table 7.3: Summary of some thermodynamic processes
Process Meaning
Adiabatic No heat transfer (heating or cooling result

from pressure change - Work is either done
on or by the gas

Isobaric Constant volume (also called isometric)
Isothermal Constant Temperature
Isobaric Constant Pressure

1. Explain what is meant by internal energy. Hence suggest how the internal energy of a

real gas differs from that of an ideal gas.

2. A heat engine operating between 100C and 7000C has efficiency equal to 40% of the

maximum theoretical efficiency. How much energy does this engine extract from the

hot reservoir in order to do 5000 J of mechanical work?



Chapter 8

Electrostatics

Learning objectives

At the end of the unit, students will be able to

• State Coulomb’s law and solve problems based on it

• Define an electric field and calculate it due to point charges,

• Distinguish between the direction of the Electric Field of positive and negative charges

• Draw Electric Field Lines

• Discuss the Electrostatics field of the conductor

• Define electric potential and electric potential energy

• Derive an expression for the potential at appoint p at a distance r from the charge

• Find the potential difference between the two points

• calculate capacitance

8.1 Coulomb’s law

Coulombs law gives a relation between two charges Q1 and Q2 which are at a separation r

apart. Experiments show that the forces between two bodies obey an inverse square law and

that the Force is proportional to the product of the charges. Simply, Coulomb’s law states

89
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The Force between two charges at a distance, r apart, is directly proportional to the product

of the two charges and inversely proportional to the square of the distance between them

Mathematically this is written as

F = K
Q1Q2

r2
=

1

4πε0

Q1Q2

r2

Where K= 1
4πε0

= 9.0 × 109Nm2/C2 = a constant and is the permittivity of free space. ε0

is a constant called the permittivity of free space (or vacuum permittivity). It has a value

of 8.85 × 10−12F/m. This constant is fundamental to the study of electric fields. It links

electrical concepts such as electric charge to mechanical quantities such as length.

Along with the permittivity of free space, there is a similar constant relating to magnetic

fields. This is called the permeability of free space (µ0).

The Force between similar charges is repulsive, and the Force between unlike charges is

attractive. In the case of gravitational Force, we can have only attractive Force due to masses.

When two charges exert forces simultaneously

on a third charge, the total Force acting on that charge is the vector sum of the forces that

the two charges would exert individually. This important property, called the principle of

superposing, holds for any number of charges.

F = F1 + F2 + F3 +−−−−−−−− Fn

Example

A test charge of q = +1× 10−6c is placed halfway between a charge of q1 = +5× 10−6c and

a charge of q2 = +3 × 10−6c that are 20cm apart in the figure below. Find the magnitude

and direction of the Force on the test charge Solution
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The Force exerted on the test charge

F1 = K
qq1

r2
1

= (9× 109Nm2/c2)
(−1× 10−6c)(+5× 10−6c)

(0.1)2
= +4.5N

This Force is to the right and taken as positive. The Force exerted by the charge q2 on q is

F2 = K
qq2

r2
2

= (9× 109Nm2/c2)
(1× 10−6c)(+3× 10−6c)

(0.1)2
= +2.7N

This Force is to the left. If the right is taken as positive, F2 is taken as negative

~Fnet = ~F1 + ~F2 = 4.5N − 2.7N = 1.8N

and it acts to the right, that is, towards the +3× 10−6c charge

Exercise

1. Two charges, one of +5 × 10−7c and the other −2 × 10−7c attract each other with a

force of 100N. How far apart are they?

2. 3c and 5c charges are separated by 2m. Where between these charges is a third charge

placed, in order for the net Force on it to be zero?

3. Three identical charges of 2µc are placed at (-3, 0) m, (3, 0) m, and (0, 4) m in

a rectangular coordinate system. What is the resultant Force on the charge that is

placed at (0, 4) m

8.2 Electric Field (E)

The concept of an electric field is used to visualize how a charge, or a collection of charges,

influences the region around it. The electric field E is analogous to g, which we call the

acceleration due to gravity, but which is the gravitational field. Everything we learned about

gravity, and how masses respond to gravitational forces can help us understand how electric

charges respond to electric forces.

The electric field concept arose to explain action-at-a-distance forces. All charged objects

create an electric field that extends outward into the surrounding space. The charge alters

that space, causing any other charged thing that enters the space to be affected by this field.

The strength of the electric field is dependent upon how charged the object creating the field

and upon the distance of separation from the charged objects
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8.2.1 Electric Field Intensity

Electric field strength is a vector quantity; it has both magnitude and direction. The magni-

tude of the electric field strength is defined in terms of how it is measured. Let’s suppose that

an electric charge can be denoted by the symbol Q. This electric charge creates an electric

field; since Q is the source of the electric field, we will refer to it as the source charge. The

strength of the source charge’s electric field could be measured by any other charge placed

somewhere in its surroundings. The charge used to measure the electric field strength is

referred to as a test charge since it is used to test the field strength. The test charge has a

quantity of charge denoted by the symbol q. When placed within the electric field, the test

charge will experience an electric force that is either attractive or repulsive. As is usually the

case, this Force will be denoted by the symbol F. The electric field’s magnitude is defined as

the Force per charge on the test charge.

Electric..F ield =
Force

Charge

If the symbol E denotes the electric field strength, then the equation can be rewritten in

symbolic form as

~E =
~F

q
r̂

Where r̂ is a unit vector

The Electric field ~E at a point in space is defined as the electric force ~F

acting on a positive test charge q placed at the point divided by the test charge

The standard metric units of electric field strength arise from its definition. Since the

electric field is defined as a force per charge, its units would be force units divided by charge

units. In this case, the standard metric unit is Newton/Coulomb (N/C)

The electric field strength is not dependent upon the quantity of the test charge. Now we

will investigate a new equation that defines electric field strength in terms of the variables

which affect the electric field strength. To do so, we will have to revisit the Coulomb’s Law

equation When applied to our two charges - the source charge (Q) and the test charge (q).

~F = K
qQ

r2
r̂

The formula for electric Force can be written as A new equation can be derived if the expres-

sion for electric Force given by Coulomb’s law is substituted for Force in the above E = F/q



8.2. ELECTRIC FIELD (E) 93

equation.

~E = K
Q

r2
r̂ =

1

4πε0

Q

r2
r̂ =

Q

4πε0r2
r̂

The electric field strength depends upon the quantity of charge on the source charge Q and

the distance of separation r from the source charge.

The strength of an electric field created by source charge Q is inversely related to the square

of the distance from the source. This is known as an inverse square law.

Electric field strength is location dependent, and its magnitude decreases as the distance

from a location to the source increases. By whatever factor the distance changes, the electric

field strength will change inversely by the square of that factor

If a number of point charges Q1, Q2, Q3, . . . .Qn are at a distance r1, r2, r3, . . . rn from a

given point P. each exerts a force on a test charge q placed, and the resultant Force on the

test charge is the vector of some of these forces.

~E = E1 + E2 + E3 + ...En =
n∑
i=1

~Ei

Because each term to be summed is a vector, the sum is a vector sum. The fact that the

fields that would be caused by the individuals charge is a direct result of the principle of

super position.

Activity 8 .1

Explain what happens to the magnitude of the electric field created by a point charge

as r approaches zero

Activity 8 .2

Consider two equal positive or negative point charges separated by the distance d. At

what point (other than) would a third test charge experience no net force?

Example

1 What are the magnitude and direction of the electric field 1.5cm from a fixed point

charge of +1.2 × 10−10C? Solution The magnitude of the electric field is computed

from

~E =
Q

4πε0r2
r̂ = K

Q

r2
r̂ = 9× 109Nm2/c2 × +1.2× 10−10C

(0.015m)2

~E = 4.8× 103N/c
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• Notice that r was expressed in the SI unit of meters

• The direction of the field is outward from the point charge because the charge is positive

1 Point charge Q1 and Q2 of 12× 10−9C and −12× 10−9C respectively, are placed 0.1m

apart as shown Compute the electric fields due to the charge at point a, b, and c

Solution: At point a, the vector due to the positive charge Q, is directed toward the

right, And the magnitude is

~E1 =
Q

4πε0r2
r̂ = 9× 109Nm2/c2 × 12× 10−9C

(0.06m)2
= 3× 104N/c..to..the..right

The vector due to the negative charge Q2 is toward the right, And the magnitude is

~E2 =
Q

4πε0r2
r̂ = 9×109Nm2/c2×12× 10−9C

(0.04m)2
= 6.75×104N/c..to..the..right..to..the..right

Hence at point a

~E = (3 + 6.75)× 104N/c = 9.75× 104N/c

At point b

The vector due to q1 , is directed toward the left, with magnitude

~E1 =
Q

4πε0r2
r̂ = 9× 109Nm2/c2 × 12× 10−9C

(0.04m)2
= 6.75× 104N/c..to..the..right

The vector due to the negative charge Q2 is toward the right, And the magnitude is

~E2 =
Q

4πε0r2
r̂ = 9×109Nm2/c2×12× 10−9C

(0.14m)2
= 0.55×104N/c..to..the..right..to..the..left
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Hence at point b

~E = (6.75− 0.55)× 104N/c = 9.75× 104N/c..to..the..left

At point C, the magnitude of each vector is

~E =
Q

4πε0r2
r̂ = 9× 109Nm2/c2 × 12× 10−9C

(0.10m)2
= 1.08× 104N/c

~Ex =

(
K
Q1

r2
cos(600)−KQ2

r2
cos(600)

)

=
2KQ

r2
cos(600

=
2× 9× 109 × 12× 10−9

(0.1)2
× 0.5N/c = 1.08× 104N/c..to..the..right

~Ey = (E1)y + (E2)y = 0

~E = Ea+Eb+Ec = 9.75×104N/c−6.20×104N/c+ 1.08N/c = 4.63×104N/c..to..the..right

8.3 Electric Field Lines

A more useful means of visually representing the vector nature of an electric field is through

the use of electric field lines of Force. These patterns of lines, sometimes referred to as electric

field lines, point in the direction which a positive test charge would accelerate if placed upon

the line. As such, the lines are directed away from positively charged source charges, and

toward negatively charged source charges.

The electric field can be represented graphically by field lines. These lines are drawn in

such a way that, at a given point, the tangent of the line has the direction of the electric

field at that point. The density of lines is proportional to the magnitude of the electric field.

Each field line starts on a positive point charge and ends on a negative point charge. Since

the density of field lines is proportional to the strength of the electric field, the number of

lines emerging from a positive charge must also be proportional to the charge.

Electric field lines provide a means to visualize the electric field. Since the electric field

is a vector, electric field lines have arrows showing the direction of the electric field. Lines

of Force are also called field lines. The direction of the field line at a point tells you what

direction the Force experienced by a charge will be if the charge is placed at that point. If the
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charge is positive, it will experience a force in the same direction as the field; if it is negative

the Force will be opposite to the field. The density of lines surrounding any given source

(a) (b)

Figure 8.1: Electric field from an isolated, (a) Posative Charge (b) Negative Charge

charge is proportional to the quantity of a charge on that source charge. If the quantity of

charge on a source charge is not identical, the pattern will take on an asymmetric nature

as one of the source charges will have a greater ability to alter the electrical nature of the

surrounding space.

There are a number of principles which will assist in such predictions .These principles are

• Electric field lines always extend from a positively charged object to a negatively

charged object, from a positively charged object to infinity, or from infinity to a nega-

tively charged object

• Electric field lines never cross each other

• Electric field lines are most dense around objects with the greatest amount of charge.

• At locations where electric field lines meet the surface of an object, the lines are per-

pendicular to the surface.

Activity 8.3

A charge 4q is at a distance r from a charge -q. Compare the number of electric

field Lines leaving the charge 4q with the number entering the charge -q

where do the extra lines beginning on 4q end.

Activity 8.4

A test charge is released in the field due to two point charges. Do the

field lines indicate the possible path traveled by the test charge?
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Conductors in Electrostatic Fields

In general a conductor can be defined as a region in space where charges are free to move

(e.g. a metal). In a static situation the charges don’t move. This implies that there is no

field within then conductor. Thus, inside a conductor:

E(r) = 0

A conductor is in electrostatic equilibrium when the charge distribution (the way the charge

is distributed over the conductor) is fixed. Basically, when you charge a conductor the charge

spreads itself out. At equilibrium, the charge and electric field follow these guidelines:

• the excess charge lies only at the surface of the conductor

• the electric field is zero within the solid part of the conductor

• the electric field at the surface of the conductor is perpendicular to the surface

• charge accumulates, and the field is strongest, on pointy parts of the conductor

8.4 Electric potential of a point charge

The electric potential of a point charge is

V = kQ/r

. where k is a constant equal to 9.0 × 109Nm2/C2. Electric field is a vector while electric

potential is a scalar. The voltage resulting from a combination of point charges is obtained by

adding voltages as integers, whereas the overall electric field is obtained by adding individual

fields as vectors.

Point charges, such as electrons, are among the fundamental building blocks of matter.

Furthermore, spherical charge distributions (like on a metal sphere) create external electric

fields exactly like a point charge. The electric potential due to a point charge is, thus, a case

we need to consider. Using calculus to find the work needed to move a test charge q from

a large distance away to a distance of r from a point charge Q , and noting the connection

between work and potential

W = −q∆V
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, we can define the electric potential V of a point charge:

Electric potential

Consider a charge q placed in an electric field E. Let us chose some arbitrary reference point

A in the field at this point the electric potential energy of the Charge is defined be zero.

This defines the electric potential energy of the charge at every other point in the field.

For instance, the electric potential energy UB at some point B is simply the work W done in

moving the charge from A to B along any path: It is clear that depends on both the particular

charge q which we place in the field and the magnitude and direction of the electric field along

some arbitrary route between points A and B. We can exploit this fact to define a quantity

known as the electric potential. The difference in electric potential between two points B and

A in an electric field is simply the work done in moving some charge between the two points

divided by the magnitude of the charge. Thus,

VB − VA =
∆W

q
=

∆U

q

The general expression for the electrical potential of a point charge Q can be obtained by

referencing to a zero of potential at infinity. The expression for the potential difference then.

rB goese to infinity is gives simply

V =
KQ

r
=

Q

4πε0r

The zero of electric potential (voltage) is set for convenience, but there is usually some

physical or geometric logic to the choice of the zero point. For a single point charge or

localized collection of charges, it is logical to set the zero point at infinity. If there are n

number of charges in space , the potential at apoint is found by superposition principles that

is the electric potential due to a number of charges is the algebraic sum of the individuals
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potentials. The total electric potential point p is the sum of the potential due to charges

Q1, Q2, Q3, ..., Qn

V =
KQ1

r1
+
KQ2

r2
+ ...+

KQn
rn

=

n∑
i=1

Qi
ri

Note; potential a scalar quantity

Activity 8.5

In a certain region of space the electric field is zero From this we can conclude that the

electric potential in this region is A) zero B) constant C) positive D) negative

The dimensions of electric potential are work (or energy) per unit charge. The units of electric

potential are, therefore, joules per Coulomb (J/c). A joule per Coulomb is usually referred

to as a volt (V)

1J/c = 1V

Consider a charge q which is slowly moved a small distance +x along the x-axis. Suppose that

the difference between the electric potential at the final and initial positions of the charge is

+V. By definition, the change +U in the charge’s electric potential energy is given by

+U = q + V = W

q∆V = qE∆r

∆V = E∆r

E =
∆V

∆r

Where E is the electric field strength According to equation electric field strength has the

dimension of potential difference over the length. It follows that the unit of electric field is

volt per mete (Vm).

8.4.1 Motion of charged particles in an electric field

When a particle of charge of and mass m is placed in an electric field E, the electric Force

exerted on the charge is qE. If this is the only Force exerted on the particle it must be the

net Force and cause the particle to accelerated according to Newton’s second law

Fe = qE = am
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a =
qE

m

If E is uniform the acceleration is constant. If the particle has a positive charge, its ac-

celeration is in the directing of the electric field. If the particle has a negative charge, its

acceleration is in the direction of opposite the electric field.

Example

1. As shown in the figure below, a positive point charge q of mass m is released from rest

in a uniform electric field E directed along the x-axis. Describe its motion

Solution

The acceleration a is constant and is given by q E/m. The motion is simple linear motion

along the x axis. Therefore we can apply the equation of kinematics in one dimension

xf = xi + vit+
1

2
at2

vf = vi + at

v2
f = v2

i + 2a(xf − xi)

Choosing the initial position of the charge as xi = 0 and assigning Vi = 0 because the particle

starts from rest, the position of the particle as a function of time is

xf =
1

2
at2 =

qE

m
t2

The speed of the particle is given by

vf =
qE

m
t
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The third kinematics equation gives us

v2
f = 2axf =

(
2qE

m

)
xf

from which we can find the kinetic energy of the charge after it has moved a distance

KE =
1

2
mv2

f =
1

2
m

(
2qE

m

)
(xf − xi) = qE∆x

2 An electron entrees the region of a uniform electric field as shown with Vi = 3 × 106

m/s and E = 200N/C. The horizontal length of the plare, L = 0.100 m

i) Find the acceleration of the electron while it is in the electric field

ii) If the electron enters the field at t = 0 find the time at which it leaves the field

iii) If the vertical position of filed the electron as enters field is yi = 0. What the

vertical position when it leaves the fields

Solution

i) The charge on the electron has 1.6× 10−19C and mc = 9.11× 10−31kg

a = −qE
me

j = −
(

1.6× 10−19c

9.11× 10−31kg

)

a = −3.51× 1013m/s2

ii) The horizontal distance across the field is L = 0.1m. We find that the time at which the

electron exists the electric field is

L = 0.1m

t =
L

vi
=

0.1m

3× 106m/s
= 3.33× 10−8s

iii) Using the results from part A and B we find that

yf =
1

2
ayt

2 = −1

2

(
3.51× 1013m/s2

)
(3.33× 10−8s)2 = −0.0195m = −1.95cm

8.5 Capacitance and Capacitor networks

A capacitor is a devise that is used to store electric charge. It is usually made up of two plates

separated by a thin insulating material known as the dielectric. The capacitance of a system

depends only on its shape and on the insulators it contains. One plate of the capacitor

is positively charged, while the other has a negative charge. The charge in a capacitor is
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proportional to the potential difference between the plates. For a capacitor with charge Q

on the positive plate and -Q on the negative plate, the capacitance measures the amount of

charge a capacitor can store. A convenient measure of the ability of a device to store electric

charge is its capacitance C.

A battery will transport charge from one plate to another until the voltage produced by

the charge buildup is equal to the battery voltage. The capacitance of an object is defined

as being equal to the charge required to raise the potential of that object by one V

C =
Q

V

Or

Q = CV

Where C is the capacitance in Farad Q is the charge in Coulomb stored in each plate V is

the potential in Volts applied to the plate

The capacitor’s capacitance (C) is a measure of the amount of charge (Q) stored

on each plate for a given potential difference or voltage (V) which appears between

the plates.

The SI unit of capacitance is the farad F The circuit symbol for a capacitor is 1farad=1Coulomb/1Volt

Figure 8.2: The circuit symbol for a capacitor

Activity

A 25µF capacitor is charged to a potential of 18V. How much charge stored

on capacitor?
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8.6 The Parallel Plate Capacitor

Consider two large flat plates placed near one another. The plates are parallel, and have equal

and opposite charges uniformly distributed. This configuration is known as a parallel-plate

capacitor. A parallel-plate capacitor is a great way to create a uniform field.

Consider a capacitance C in vacuum consisting of two parallel plates, each with area A

separated by a distance d as shown in figure 1. One plate carries acharge Q, and the other

carries a charge-Q. The amount of a charge that can be stored on a plate for a given potential

increases as a plate area increased. Thus ,we expect the capacitance to be proportional to

the plate area A.

Figure 8.3: The Parallel Plate Capacitor

Now consider the region that separates the plate. The electric field between the plates must

increase as d decreased. Moving the plates together causes the charge on the capacitor to

increases. If d is increased, the charge deceases. As a result, we expect the capacitance of the

pair of the plates to be inversely proportional to d. We can verify these physical arguments

with the following derivation. The surface charge density on either plate is

δ =
Q

A

The magnitude of the Electric field has a very simple relation to the voltage between the

plates and their separation d.

E =
V

d
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Using the definition of capacitance we can determine the capacitance C of an ideal capacitor

as a function of its structure.

C =
Q

V
=

Q

Ed
=

Q
δ
ε0
d

= ε0
Q
Q
Ad

C = ε0
A

d

This equation for the capacitance of a parallel capacitor shows that C is a constant indepen-

dent of the charge stored in on the plates or the voltage across the capacitor.The capacitance

of a system depends on its shapes, dimensions and separation of the conductors that make

up the capacitor

Figure 8.4: TThe Parallel Plate Capacitor

Example

1) The plates of a parallel-plate capacitor are 5mm apart and 2m 2 in area. The plates

are in vacuum. A potential difference 10, 000v is applied across the capacitor compute

A) The capacitance

B) The charge on the plate

C) The electric intensity in the space b/n them

Solution A)

C = ε0
A

d
=

(
8.85× 10−12c2/Nm2

5× 10−3m

)
(2m2)

C = 3.54× 10−9C2/Nm = 3.54× 10−9F

B) The charge on the plate

Q = CVab = (3.54× 10−9C/V )(102V ) = 3.54× 105c
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C) The electric intensity in the space b/n them

E =
δ

d
=

Q

ε0A
=

3.54× 105C

8.85× 10−12c2/Nm(2m2)

= 20× 105N/c

Since the electric field equals the potential gradient

E =
Vab
d

=
104V

5× 10−3m
= 20× 105v/m

N

C
=
V

m

2 Parallel-plate capacitor is designed to have a capacitance of 1.00F when the plates

are separated by 1.00mm in vacuum what must be the arch of the plates. (Ans A =

1.13× 108m2)

8.6.1 Energy Stored in a Capacitor

The energy stored in a capacitor is the same as the work needed to build up the charge on

the plates. As the charge increases, the harder it is to add more. Potential energy is the

charge multiplied by the potential, and as the charge builds up the potential does too. If the

potential difference between the two plates is V at the end of the process, and 0 (zero) at the

start, the average potential is V/2. Multiplying this average potential by the charge gives

the potential energy.

PE = 1/2QV

. Substituting in for Q, Q = CV, gives: The energy stored in a capacitor is: intermes of C

and V.

W = U =
1

2
CV 2

Substituting Q = CV and V = Q
C

U =
1

2
QV

This is U intermes of Q and V

U =
Q2

2C

intermes of Q and C Where U=Electric potential energy in joule Q=Charge in Coulomb.

V=Potential in volt C = Capacitance in farad These formulae are valid for any type of

capacitor, since the arguments we used to derive them do not depend on any special property
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of parallel plate capacitors. The potential difference between the plates is V = Ed and

C = ε0A
d Thus, the energy stored in the capacitor can be written as

U = W =
CV 2

2

V = Ed, C = ε0A
d

U =
ε0AE

2d2

2d

U =
ε0AE

2d

2

Now, Ad is the volume of the field filled region between the plates, so if the energy is stored

in the electric field then the energy per unit volume, or energy density, of the field must be

u =
U

V
=

1

2

CV 2

Ad

Substituting

C = ε0
A

D

V 2

d2
= E2

u =
1

2
ε0
V 2

d2
=

1

2
ε0E

2

1) Air filled parallel plate capacitor has a capacitance of 5.0 pF. Apotential of 100V is

applied across the plates, which are 1.0 cm apart, using astorage battery.

a) What is the energy stored in the capacitor? Suppose that the battery is discon-

nected and the plates are moved until they are 2.0 cm apart.

b) What is the energy stored in the capacitor now?

c) Suppose, instead, that the battery is left connected and the plates are again moved

until they are 2.0 cm apart. What is the energy stored in the capacitor in this

case?

Solution

The initial energy stored in the capacitor is

U =
CV 2

2
=

5× 10−12

2
(1000)2J = 2.58× 10−8J
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When the spacing between the plates is doubled, the capacitance of the cpacitor is halved

to 2.5 pF. If the battery is disconnected then this process takes Place at constant charge Q.

Thus, it is obvious from the formula

U =
Q2

2C

That in this case the energy stored in the capacitor doubles. So, the new energy is

U = 2(2.58× 10−8)J

= 5.16× 10−8J

8.7 Capacitance net work

Parallel Combination

Capacitors are one of the standard components of electronic circuits. Complicated combi-

nations of capacitors often occur in practical circuits. It is, therefore, useful to have a set

of rules for finding the equivalent capacitance of some general arrangement of capacitors.

It turns out that we can always find the equivalent capacitance by repeated application of

two simple rules. These rules related to capacitors connected in series and in parallel. In a

parallel combination, the capacitors are usually drawn side by side. If we imagine them as

parallel-plate capacitors with the same gap, snuggling them right up next to each other, the

combination seems to become a single capacitor with an area equal to the sum of the areas.

Then from the equation for capacitance of a parallel-plate capacitor, we have.

Ceq =
ε0Aeq
d

=
ε0(A1 +A2)

d

=
ε0A1

d
+
ε0A2

d

Ceq = C1 + C2

Or consider two capacitors connected in parallel; i.e. with the positively charged Plates

connected to a common ”input” wire and the negatively charged plates attached to a common

”output” wire. What is the equivalent capacitance between the input and output wires? In

this case, the potential difference V across the two Capacitors is the same, and is equal to

the potential difference between the input and output wires.
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The total charge Q, however, stored in the two capacitors is di-vided between the capacitors,

since it must distribute itself such that the voltage across the two is the same. Since the

capacitors may have different ,C 1 and C 2 , the charges Q 1 and Q 2 may also be different.

The equivalent capacitance Ceq of the pair of capacitors is simply the ratio Q/V

Ceq =
Q

V
=
Q1

V
+
Q2

V

Ceq = C1 + C2

When a number of capacitors are connected in parallel, the total or effective capacitance

Figure 8.5: Capacitors connected in Parallel

of the group is equal to the sum of the individual capacitances The equation for calculating

the total capacitance C obtained by capacitances C1 , C2, C3 etc..The formula for parallel

capacitor is same as the resistance in series. The working voltage of parallel capacitors is

equal to the lowest working voltage rating in the combination. Parallel connected Capacitors

Figure 8.6: Capacitors connected in Parallel

always have the same voltage drop across each of them. They do not have the same charge

unless they have the same capacitance C. The charge on the equivalent capacitor C eq is the
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sum of the charges on both capacitors. The Voltage on the equivalent capacitor C eq is the

same as the voltage across either capacitor.

The equivalent capacitance of capacitors connected in parallel is the sum of

the individual capacitances

Series Combination

In a series combination, the capacitors are connected head-to-tail. We want to replace the

pair or more by a single equivalent capacitor. To do this, we must understand how the charge

is distributed on the plates.

Consider the inner pair of plates, one from each capacitor, connected by a conductor.

These three objects are electrically isolated from the remainder of the circuit; they form a

single isolated conductor. Since the net charge on the capacitors is zero before the battery

is connected, the net charge on the inner pair of plates must also be zero. After the battery

is connected, the plates of the capacitors will hold some charge, but the inner pair of plates

will still have zero net charge. Therefore, the charges on the inner pair of plates are equal

and opposite, and we see that both capacitors will hold the same charge. We don’t add these

charges together, as in the parallel case. The quantity that adds is the voltage across each

capacitor. consider capacitors arranged so that the potential across the combination is equal

to the sum of the potential difference across each as shown in fig

Figure 8.7: Capacitors connected in Series

∆V = ∆V1 + ∆V2

The voltege acrossacrs sthecapacitor is releated totheir ch arg es

∆V1 =
Q

C1
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and

∆V2 =
Q

C2

The definetion of equvalent capacitor is

Ceq =
Q

∆V

Or

∆V =
Q

Ceq

Therfore
Q

Ceq
=

Q

C1
+
Q

C2

1

Ceq
=

1

C1
+

1

C2

For more than two Capacitor

1

Ceq
=

1

C1
+

1

C2
+

1

C3
+ ...+

1

Cn
=

n∑
i=1

1

Ci

Series connected Capacitors always have the same charge. They do not the same voltage

Figure 8.8: Capacitors connected in Series

unless the capacitors have the same Capacitance C. The charge on the equivalent capacitor

Ce is the same as the charge on either capacitor. The Voltage across the equivalent capacitor

Ceq is the sum of the voltage across both capacitors. If two or more capacitors are connected

in series as shown above, the total capacitance is less than that of the smallest capacitor in

the group
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Example

1) Let C1 = 6µF and C2 = 3µF , Vab = 18V

A. What is the equivalent capacitance of the series combination

B. What is the charge on each capacitor

C. Find the potation difference across the capacitor.

Figure 8.9: Capacitors connected in Series

Solution

a) for series combination
1

Ceq
=

1

C1
+

1

C2

=
1

6µF
+

1

3µF
=

1

2µF

Ceq = 2µF

b) The charge Q is

Q1 = Q2 = CeqVab = (2µF )(18V ) = 36µC

c) The potential difference across the capacitor are

Vac = V1
Q

C1
=

36µF

6µF
= 6V

Vcb = V2 =
Q

C2
=

36µF

3µF
= 12V

1) A 1µF and a 2µF capacitor are connected in parallel and this pair of capacitors is then

connected in series with a 4µF capacitor.

i) What is the equivalent capacitance of the whole combination?
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ii) What is the charge on the 4µ F capacitor if the whole combination is connected

across the terminals of a 6V battery?

iii) What are the charges on the 1µF and 2µF capacitors?

Answer:

The equivalent capacitance of the 1µF and a 2µF capacitors connected in parallel

is 1µF + 2µF = 3µF . When a 3µF capacitor is combined in series with 4µF

capacitor the equivalent capacitance of the whole combination is given by

Figure 8.10: Capacitors connected in Series

1

Ceq
=

1

3µF
+

1

4µF

=
7

12× 10−6
F−1

Ceq =
12× 10−6

7
F = 1.71µC

The charge delivered by the 6 V battery is Q = Ceq, V = (1.71 × 10−6)(6) = 10.3µc. This

is the charge on the 4µF capacitor, since one of the terminals of the battery is connected

directly to one of the plates of this capacitor. The voltage drop across the 4µF capacitor is

VA =
Q

C4
=

10× 10−6C

4× 10−6F
= 2.57V

Thus, the voltage drop across the 1µF and 2µF combination must be

V12 = 6V − 2.57V = 3.43

The charge stored on the 1µF is given by

Q1 = C1V12 = (1µF )(3.43) = 3.42µF
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Likewise, the charge stored on the 2µF capacitor is

Q2 = C2V12 = (2µF )(3.43) = 6.84µF

Note that the total charge stored on the 1µF and 2µF combination is

Q12 = Q1 +Q2 = 10.3µC

In fig C1 = 6µF and C 2 = 3µF and V ab 18V find

a Equivalent capacitance

b The charge on each capacitor

c The potential difference on each capacitor

Solution

A) The equivalent capacitance of the parallel combination is Ceq = C1 +C2 = 6µF + 3µF =

9µF B) The charge Q1andQ2 are

Q1 = C1V = (6µF )(18V ) = 108µC

Q2 = C2V = (3µF )(18V ) = 54µC

C) The potential is the same for each capacitor. Because they are connected unparallel

Solution

C0 = ε0
A

d

(
8.85× 10−12C2/Nm2

)
= 17.7× 10−11F = 177PF

Unit Exercise
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1) What is the magnitude and direction of the electric field that will balances the weight

of?

a) an electron and

b) a proton

2) In figure determine the point (other than infinity) at which the electric field is zero

3) Two point charges are located on the X axis.The first is a charge to Q at X = - a. The

second is an unknown charge located at X = 3a. The net electric field these charges

produce at the origin has a magnitude of 2KQ
a2

. What are the two possible values of

the known charge?

4) Determine the point at which the electric field zero.

5 Three equal positive charges are at the corners of an equilateral triangle of side a as

shown.

A Three Charges together create an electric field. Sketch the field lines in the plane of

the charge

B Find the location of the point (other than infinity) where the electric field is zero
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6 Find the potential at a distance 1cm from a proton (B) What is the potential difference

between two points that are 1cm and 2cm from a proton? (c) What if ? Repeat part

(a) and (b) for an electron

7 At a certain distance from point charge, the magnitude of the electric field is 500v/m

and the electric potential is -3.00kv

a) What is the distance to the charge?

b) What is the magnitude of the charge?8)

8) A proton accelerates from rest in a uniform electric field 640N/C its speed is 1.2x10 6

m/s

a) Find the acceleration of the proton

b) How long does it take the proton to reach the speed?

c) How far has it moved in this time?
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